Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Sep;113(1):87–94. doi: 10.1111/j.1476-5381.1994.tb16178.x

Photon pharmacology of an iron-sulphur cluster nitrosyl compound acting on smooth muscle.

E K Matthews 1, E D Seaton 1, M J Forsyth 1, P P Humphrey 1
PMCID: PMC1510050  PMID: 7812636

Abstract

1. The mechanisms of action on smooth muscle of the iron-sulphur cluster nitrosyl compound, heptanitrosyl-tri-mu 3-thioxotetraferrate (1-), (RBS), a photosensitive nitric oxide donor, have been investigated in the guinea-pig taenia caeci (coli) in vitro. 2. After exposure to RBS (50 microM) for 30 min, and subsequent washout, a sustained contraction was recorded in the absence of light to either the agonist carbachol (50 microM) or a depolarizing concentration of KCl (23.5 mM). Photon irradiation (> 400 nm) caused a prompt relaxation of precontracted RBS-treated muscle, the magnitude of which depended upon the intensity (1.1 x 10(3) to 1.1 x 10(5) lux), duration (30 s to 20 min) and wavelength (400 to 800 nm), of the incident illumination. 3. Repeated periods of illumination at 1.1 x 10(4) lux produced a reversible relaxation of both carbachol and KCl-evoked tone in muscle pretreated with RBS (50 microM). These photorelaxations were reproducible at 10 min intervals for several hours with a maximal relaxation amounting to 80 to 90% that of the tone produced by carbachol (50 microM). 4. The nitric oxide synthase inhibitor, NG-nitro-L-arginine (60 microM), caused no inhibition of the photon-induced relaxation of RBS-treated muscle. In contrast, N-methylhydroxylamine (2 mM), L-cysteine (10 mM), DL-dithiothreitol (2 mM), methylene blue (30 microM), and haemoglobin (20 microM), all reversibly but significantly inhibited (P < 0.001) the photorelaxation response. However, neither the aminothiol N-acetyl-L-cysteine (10 mM) nor the tripeptide glutathione (10 mM) blocked the RBS-induced photorelaxation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
87

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannai S. Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta. 1984 Sep 3;779(3):289–306. doi: 10.1016/0304-4157(84)90014-5. [DOI] [PubMed] [Google Scholar]
  2. Brading A. F., Sneddon P. Evidence for multiple sources of calcium for activation of the contractile mechanism of guinea-pig taenia coli on stimulation with carbachol. Br J Pharmacol. 1980 Oct;70(2):229–240. doi: 10.1111/j.1476-5381.1980.tb07928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braughler J. M. Soluble guanylate cyclase activation by nitric oxide and its reversal. Involvement of sulfhydryl group oxidation and reduction. Biochem Pharmacol. 1983 Mar 1;32(5):811–818. doi: 10.1016/0006-2952(83)90581-6. [DOI] [PubMed] [Google Scholar]
  4. Flitney F. W., Megson I. L., Flitney D. E., Butler A. R. Iron-sulphur cluster nitrosyls, a novel class of nitric oxide generator: mechanism of vasodilator action on rat isolated tail artery. Br J Pharmacol. 1992 Nov;107(3):842–848. doi: 10.1111/j.1476-5381.1992.tb14534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gao Y., Vanhoutte P. M. Attenuation of contractions to acetylcholine in canine bronchi by an endogenous nitric oxide-like substance. Br J Pharmacol. 1993 Jul;109(3):887–891. doi: 10.1111/j.1476-5381.1993.tb13658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibson A., Babbedge R., Brave S. R., Hart S. L., Hobbs A. J., Tucker J. F., Wallace P., Moore P. K. An investigation of some S-nitrosothiols, and of hydroxy-arginine, on the mouse anococcygeus. Br J Pharmacol. 1992 Nov;107(3):715–721. doi: 10.1111/j.1476-5381.1992.tb14512.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson A., Mirzazadeh S. N-methylhydroxylamine inhibits and M&B 22948 potentiates relaxations of the mouse anococcygeus to non-adrenergic, non-cholinergic field stimulation and to nitrovasodilator drugs. Br J Pharmacol. 1989 Mar;96(3):637–644. doi: 10.1111/j.1476-5381.1989.tb11863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hobbs A. J., Gibson A. L-NG-nitro-arginine and its methyl ester are potent inhibitors of non-adrenergic, non-cholinergic transmission in the rat anococcygeus. Br J Pharmacol. 1990 Aug;100(4):749–752. doi: 10.1111/j.1476-5381.1990.tb14086.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katsuki S., Arnold W. P., Murad F. Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucleotide Res. 1977 Aug;3(4):239–247. [PubMed] [Google Scholar]
  11. Matsunaga K., Furchgott R. F. Interactions of light and sodium nitrite in producing relaxation of rabbit aorta. J Pharmacol Exp Ther. 1989 Feb;248(2):687–695. [PubMed] [Google Scholar]
  12. Matthews E. K., Flaherty C., Smith W. H. Photodynamic action of aluminium phthalocyanine tetrasulphonate (A1PcS4) on smooth muscle: effects of thiols and a cyclic GMP analogue. Br J Pharmacol. 1993 Nov;110(3):1248–1254. doi: 10.1111/j.1476-5381.1993.tb13949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matthews E. K., Mesler D. E. Photodynamic effects of erythrosine on the smooth muscle cells of guinea-pig taenia coli. Br J Pharmacol. 1984 Oct;83(2):555–566. doi: 10.1111/j.1476-5381.1984.tb16520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayer B., Brunner F., Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993 Jan 26;45(2):367–374. doi: 10.1016/0006-2952(93)90072-5. [DOI] [PubMed] [Google Scholar]
  15. Myers P. R., Minor R. L., Jr, Guerra R., Jr, Bates J. N., Harrison D. G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature. 1990 May 10;345(6271):161–163. doi: 10.1038/345161a0. [DOI] [PubMed] [Google Scholar]
  16. Prince R. C., Grossman M. J. Novel iron-sulfur clusters. Trends Biochem Sci. 1993 May;18(5):153–154. doi: 10.1016/0968-0004(93)90101-r. [DOI] [PubMed] [Google Scholar]
  17. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  18. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES