Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Sep;113(1):216–220. doi: 10.1111/j.1476-5381.1994.tb16196.x

Natriuretic peptide-induced cyclic GMP accumulation in adult guinea-pig cerebellar slices.

F Hernández 1, S P Alexander 1, D A Kendall 1
PMCID: PMC1510064  PMID: 7812614

Abstract

1. Second messenger responses to natriuretic peptides were studied in guinea-pig cerebellar slices by use of radioactive precursors. 2. The rank order of potency of the different natriuretic peptides in generating [3H]-guanosine 3':5'-cyclic monophosphate (cyclic GMP) was atrial natriuretic peptide (ANP) > brain natriuretic peptide (BNP) >> C-type natriuretic peptide (CNP) with EC50 values of 19.5 +/- 8.8 nM for ANP and 169 +/- 41 nM for BNP. CNP induced [3H]-cyclic GMP accumulation only at concentrations greater than 1 microM. 3. An additive response to ANP (1 microM) was observed in the presence of the adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA, 10 microM) or the soluble guanylyl cyclase activator, sodium nitroprusside (SNP, 100 microM) for [3H]-cyclic GMP accumulation. 4. ANP, BNP and CNP (all at 1 microM) failed to alter significantly either basal-, forskolin- (10 microM), isoprenaline- (100 microM), or NECA- (10 microM) induced [3H]-cyclic AMP generation. Natriuretic peptides also did not change the [3H]-cyclic AMP steady-state reached after 10 min of treatment with 10 microM forskolin. 5. Natriuretic peptides failed to elicit significant accumulation of [3H]-inositol phosphates at concentrations up to 10 microM. 6. These data are consistent with the presence of ANPA, rather than ANPB or clearance receptors (C-receptors), linked to second messenger cascades in guinea-pig cerebellar slices.

Full text

PDF
216

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander S. P., Kendall D. A., Hill S. J. Differences in the adenosine receptors modulating inositol phosphates and cyclic AMP accumulation in mammalian cerebral cortex. Br J Pharmacol. 1989 Dec;98(4):1241–1248. doi: 10.1111/j.1476-5381.1989.tb12670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anand-Srivastava M. B., Sairam M. R., Cantin M. Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem. 1990 May 25;265(15):8566–8572. [PubMed] [Google Scholar]
  3. Berl T., Mansour J., Teitelbaum I. ANP stimulates phospholipase C in cultured RIMCT cells: roles of protein kinases and G protein. Am J Physiol. 1991 Apr;260(4 Pt 2):F590–F595. doi: 10.1152/ajprenal.1991.260.4.F590. [DOI] [PubMed] [Google Scholar]
  4. Brown J., Czarnecki A. Autoradiographic localization of atrial and brain natriuretic peptide receptors in rat brain. Am J Physiol. 1990 Jan;258(1 Pt 2):R57–R63. doi: 10.1152/ajpregu.1990.258.1.R57. [DOI] [PubMed] [Google Scholar]
  5. Brown J., Zuo Z. C-type natriuretic peptide and atrial natriuretic peptide receptors of rat brain. Am J Physiol. 1993 Mar;264(3 Pt 2):R513–R523. doi: 10.1152/ajpregu.1993.264.3.R513. [DOI] [PubMed] [Google Scholar]
  6. Garbers D. L. Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell. 1992 Oct 2;71(1):1–4. doi: 10.1016/0092-8674(92)90258-e. [DOI] [PubMed] [Google Scholar]
  7. Gardner D. G., Vlasuk G. P., Baxter J. D., Fiddes J. C., Lewicki J. A. Identification of atrial natriuretic factor gene transcripts in the central nervous system of the rat. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2175–2179. doi: 10.1073/pnas.84.8.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hernández F., Alexander S. P., Kendall D. A. Forskolin and 3-isobutyl-1-methylxanthine increase basal and sodium nitroprusside-elevated cyclic GMP levels in adult guinea-pig cerebellar slices. J Neurochem. 1994 Jun;62(6):2212–2218. doi: 10.1046/j.1471-4159.1994.62062212.x. [DOI] [PubMed] [Google Scholar]
  9. Hernández F., Kendall D. A., Alexander S. P. Adenosine receptor-induced second messenger production in adult guinea-pig cerebellum. Br J Pharmacol. 1993 Nov;110(3):1085–1090. doi: 10.1111/j.1476-5381.1993.tb13925.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirata M., Chang C. H., Murad F. Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta. 1989 Mar 6;1010(3):346–351. doi: 10.1016/0167-4889(89)90060-8. [DOI] [PubMed] [Google Scholar]
  11. Kojima M., Minamino N., Kangawa K., Matsuo H. Cloning and sequence analysis of a cDNA encoding a precursor for rat C-type natriuretic peptide (CNP). FEBS Lett. 1990 Dec 10;276(1-2):209–213. doi: 10.1016/0014-5793(90)80544-s. [DOI] [PubMed] [Google Scholar]
  12. Koller K. J., Lowe D. G., Bennett G. L., Minamino N., Kangawa K., Matsuo H., Goeddel D. V. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science. 1991 Apr 5;252(5002):120–123. doi: 10.1126/science.1672777. [DOI] [PubMed] [Google Scholar]
  13. Komatsu Y., Nakao K., Suga S., Ogawa Y., Mukoyama M., Arai H., Shirakami G., Hosoda K., Nakagawa O., Hama N. C-type natriuretic peptide (CNP) in rats and humans. Endocrinology. 1991 Aug;129(2):1104–1106. doi: 10.1210/endo-129-2-1104. [DOI] [PubMed] [Google Scholar]
  14. Levin E. R. Natriuretic peptide C-receptor: more than a clearance receptor. Am J Physiol. 1993 Apr;264(4 Pt 1):E483–E489. doi: 10.1152/ajpendo.1993.264.4.E483. [DOI] [PubMed] [Google Scholar]
  15. Maack T. Receptors of atrial natriuretic factor. Annu Rev Physiol. 1992;54:11–27. doi: 10.1146/annurev.ph.54.030192.000303. [DOI] [PubMed] [Google Scholar]
  16. MacFarland R. T., Zelus B. D., Beavo J. A. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem. 1991 Jan 5;266(1):136–142. [PubMed] [Google Scholar]
  17. Morii N., Nakao K., Sugawara A., Sakamoto M., Suda M., Shimokura M., Kiso Y., Kihara M., Yamori Y., Imura H. Occurrence of atrial natriuretic polypeptide in brain. Biochem Biophys Res Commun. 1985 Mar 15;127(2):413–419. doi: 10.1016/s0006-291x(85)80176-5. [DOI] [PubMed] [Google Scholar]
  18. Ogawa Y., Nakao K., Mukoyama M., Shirakami G., Itoh H., Hosoda K., Saito Y., Arai H., Suga S., Jougasaki M. Rat brain natriuretic peptide--tissue distribution and molecular form. Endocrinology. 1990 Apr;126(4):2225–2227. doi: 10.1210/endo-126-4-2225. [DOI] [PubMed] [Google Scholar]
  19. Pandey K. N., Kovacs W. J., Inagami T. The inhibition of progesterone secretion and the regulation of cyclic nucleotides by atrial natriuretic factor in gonadotropin responsive murine Leydig tumor cells. Biochem Biophys Res Commun. 1985 Dec 17;133(2):800–806. doi: 10.1016/0006-291x(85)90975-1. [DOI] [PubMed] [Google Scholar]
  20. Quirion R. Atrial natriuretic factors and the brain: an update. Trends Neurosci. 1988 Feb;11(2):58–62. doi: 10.1016/0166-2236(88)90165-8. [DOI] [PubMed] [Google Scholar]
  21. Quirion R., Dalpé M., Dam T. V. Characterization and distribution of receptors for the atrial natriuretic peptides in mammalian brain. Proc Natl Acad Sci U S A. 1986 Jan;83(1):174–178. doi: 10.1073/pnas.83.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Quirion R., Dalpé M., DeLéan A. Characterization, distribution and plasticity of atrial natriuretic factor binding sites in brain. Can J Physiol Pharmacol. 1988 Mar;66(3):280–287. doi: 10.1139/y88-048. [DOI] [PubMed] [Google Scholar]
  23. Resink T. J., Scott-Burden T., Baur U., Jones C. R., Bühler F. R. Atrial natriuretic peptide induces breakdown of phosphatidylinositol phosphates in cultured vascular smooth-muscle cells. Eur J Biochem. 1988 Mar 1;172(2):499–505. doi: 10.1111/j.1432-1033.1988.tb13915.x. [DOI] [PubMed] [Google Scholar]
  24. Saito Y., Nakao K., Itoh H., Yamada T., Mukoyama M., Arai H., Hosoda K., Shirakami G., Suga S., Minamino N. Brain natriuretic peptide is a novel cardiac hormone. Biochem Biophys Res Commun. 1989 Jan 31;158(2):360–368. doi: 10.1016/s0006-291x(89)80056-7. [DOI] [PubMed] [Google Scholar]
  25. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  26. Schulz S., Singh S., Bellet R. A., Singh G., Tubb D. J., Chin H., Garbers D. L. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell. 1989 Sep 22;58(6):1155–1162. doi: 10.1016/0092-8674(89)90513-8. [DOI] [PubMed] [Google Scholar]
  27. Shibasaki T., Naruse M., Naruse K., Masuda A., Kim Y. S., Imaki T., Yamauchi N., Demura H., Inagami T., Shizume K. Atrial natriuretic factor is released from rat hypothalamus in vitro. Biochem Biophys Res Commun. 1986 Apr 29;136(2):590–595. doi: 10.1016/0006-291x(86)90481-x. [DOI] [PubMed] [Google Scholar]
  28. Shibuki K., Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature. 1991 Jan 24;349(6307):326–328. doi: 10.1038/349326a0. [DOI] [PubMed] [Google Scholar]
  29. Smellie F. W., Davis C. W., Daly J. W., Wells J. N. Alkylxanthines: inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci. 1979 Jun 25;24(26):2475–2482. doi: 10.1016/0024-3205(79)90458-2. [DOI] [PubMed] [Google Scholar]
  30. Sudoh T., Kangawa K., Minamino N., Matsuo H. A new natriuretic peptide in porcine brain. Nature. 1988 Mar 3;332(6159):78–81. doi: 10.1038/332078a0. [DOI] [PubMed] [Google Scholar]
  31. Sudoh T., Minamino N., Kangawa K., Matsuo H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990 Apr 30;168(2):863–870. doi: 10.1016/0006-291x(90)92401-k. [DOI] [PubMed] [Google Scholar]
  32. Takayanagi R., Grammer R. T., Inagami T. Regional increase of cyclic GMP by atrial natriuretic factor in rat brain: markedly elevated response in spontaneously hypertensive rats. Life Sci. 1986 Aug 11;39(6):573–580. doi: 10.1016/0024-3205(86)90515-1. [DOI] [PubMed] [Google Scholar]
  33. Tallerico-Melnyk T., Yip C. C., Watt V. M. Widespread co-localization of mRNAs encoding the guanylate cyclase-coupled natriuretic peptide receptors in rat tissues. Biochem Biophys Res Commun. 1992 Dec 15;189(2):610–616. doi: 10.1016/0006-291x(92)92244-r. [DOI] [PubMed] [Google Scholar]
  34. Trapani A. J., Smits G. J., McGraw D. E., Spear K. L., Koepke J. P., Olins G. M., Blaine E. H. Thiorphan, an inhibitor of endopeptidase 24.11, potentiates the natriuretic activity of atrial natriuretic peptide. J Cardiovasc Pharmacol. 1989 Sep;14(3):419–424. doi: 10.1097/00005344-198909000-00010. [DOI] [PubMed] [Google Scholar]
  35. Tseng Y. C., Lahiri S., Sellitti D. F., Burman K. D., D'Avis J. C., Wartofsky L. Characterization by affinity cross-linking of a receptor for atrial natriuretic peptide in cultured human thyroid cells associated with reductions in both adenosine 3',5'-monophosphate production and thyroglobulin secretion. J Clin Endocrinol Metab. 1990 Feb;70(2):528–533. doi: 10.1210/jcem-70-2-528. [DOI] [PubMed] [Google Scholar]
  36. Ueda S., Minamino N., Aburaya M., Kangawa K., Matsukura S., Matsuo H. Distribution and characterization of immunoreactive porcine C-type natriuretic peptide. Biochem Biophys Res Commun. 1991 Mar 29;175(3):759–767. doi: 10.1016/0006-291x(91)91631-l. [DOI] [PubMed] [Google Scholar]
  37. Vigne P., Frelin C. C-type natriuretic peptide is a potent activator of guanylate cyclase in endothelial cells from brain microvessels. Biochem Biophys Res Commun. 1992 Mar 16;183(2):640–644. doi: 10.1016/0006-291x(92)90530-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES