Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Sep;113(1):233–239. doi: 10.1111/j.1476-5381.1994.tb16199.x

Ca2+ release induced by myotoxin alpha, a radio-labellable probe having novel Ca2+ release properties in sarcoplasmic reticulum.

K Furukawa 1, K Funayama 1, M Ohkura 1, Y Oshima 1, A T Tu 1, Y Ohizumi 1
PMCID: PMC1510074  PMID: 7812616

Abstract

1. Myotoxin alpha (MYTX), a polypeptide toxin purified from the venom of prairie rattlesnakes (Crotalus viridis viridis) induced Ca2+ release from the heavy fraction (HSR) but not the light fraction of skeletal sarcoplasmic reticulum at concentrations higher than 1 microM, followed by spontaneous Ca2+ reuptake by measuring extravesicular Ca2+ concentrations using the Ca2+ electrode. 2. The rate of 45Ca2+ release from HSR vesicles was markedly accelerated by MYTX in a concentration-dependent manner in the range of concentrations between 30 nM and 10 microM, indicating the most potent Ca2+ releaser in HSR. 3. The Ca2+ dependency of MYTX-induced 45Ca2+ release has a bell-shaped profile but it was quite different from that of caffeine, an inducer of Ca(2+)-induced Ca2+ release. 4. 45Ca2+ release induced by MYTX was remarkable in the range of pCa between 8 and 3, whereas that by caffeine was prominent in the range of pCa, i.e., between 7 and 5.5. 5. MYTX-induced 45Ca2+ release consists of both early and late components. The early component caused by MYTX at low concentrations (30-300 nM) completed within 20 s, while the late component induced by it at higher concentrations (> 0.3 microM) was maintained for at least 1 min. 6. Both the components were almost completely inhibited by inhibitors of Ca2+ such as Mg2+, ruthenium red and spermine. 7. 45Ca2+ release induced by caffeine or beta,gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) was completely inhibited by high concentrations of procaine. Procaine abolished the early component but not the late one, suggesting that at least the early component is mediated through Ca(2+)-induced Ca2+ release channels.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  2. Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan K. M., Delfert D., Junger K. D. A direct colorimetric assay for Ca2+ -stimulated ATPase activity. Anal Biochem. 1986 Sep;157(2):375–380. doi: 10.1016/0003-2697(86)90640-8. [DOI] [PubMed] [Google Scholar]
  4. Ebashi S. Excitation-contraction coupling and the mechanism of muscle contraction. Annu Rev Physiol. 1991;53:1–16. doi: 10.1146/annurev.ph.53.030191.000245. [DOI] [PubMed] [Google Scholar]
  5. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  6. Endo M., Tanaka M., Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970 Oct 3;228(5266):34–36. doi: 10.1038/228034a0. [DOI] [PubMed] [Google Scholar]
  7. Fang Y. I., Adachi M., Kobayashi J., Ohizumi Y. High affinity binding of 9-[3H]methyl-7-bromoeudistomin D to the caffeine-binding site of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Sep 5;268(25):18622–18625. [PubMed] [Google Scholar]
  8. Fleischer S., Ogunbunmi E. M., Dixon M. C., Fleer E. A. Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7256–7259. doi: 10.1073/pnas.82.21.7256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ford L. E., Podolsky R. J. Regenerative calcium release within muscle cells. Science. 1970 Jan 2;167(3914):58–59. doi: 10.1126/science.167.3914.58. [DOI] [PubMed] [Google Scholar]
  10. Fox J. W., Elzinga M., Tu A. T. Amino acid sequence and disulfide bond assignment of myotoxin a isolated from the venom of Prairie rattlesnake (Crotalus viridis viridis). Biochemistry. 1979 Feb 20;18(4):678–684. doi: 10.1021/bi00571a020. [DOI] [PubMed] [Google Scholar]
  11. Hymel L., Inui M., Fleischer S., Schindler H. Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci U S A. 1988 Jan;85(2):441–445. doi: 10.1073/pnas.85.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Inui M., Saito A., Fleischer S. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem. 1987 Feb 5;262(4):1740–1747. [PubMed] [Google Scholar]
  13. Kim D. H., Ohnishi S. T., Ikemoto N. Kinetic studies of calcium release from sarcoplasmic reticulum in vitro. J Biol Chem. 1983 Aug 25;258(16):9662–9668. [PubMed] [Google Scholar]
  14. Kobayashi J., Taniguchi M., Hino T., Ohizumi Y. Eudistomin derivatives, novel phosphodiesterase inhibitors: synthesis and relative activity. J Pharm Pharmacol. 1988 Jan;40(1):62–63. doi: 10.1111/j.2042-7158.1988.tb05154.x. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi M., Shoji N., Ohizumi Y. Gingerol, a novel cardiotonic agent, activates the Ca2+-pumping ATPase in skeletal and cardiac sarcoplasmic reticulum. Biochim Biophys Acta. 1987 Sep 18;903(1):96–102. doi: 10.1016/0005-2736(87)90159-3. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lai F. A., Erickson H. P., Rousseau E., Liu Q. Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature. 1988 Jan 28;331(6154):315–319. doi: 10.1038/331315a0. [DOI] [PubMed] [Google Scholar]
  18. Martonosi A. N. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev. 1984 Oct;64(4):1240–1320. doi: 10.1152/physrev.1984.64.4.1240. [DOI] [PubMed] [Google Scholar]
  19. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  20. Nakamura Y., Kobayashi J., Gilmore J., Mascal M., Rinehart K. L., Jr, Nakamura H., Ohizumi Y. Bromo-eudistomin D, a novel inducer of calcium release from fragmented sarcoplasmic reticulum that causes contractions of skinned muscle fibers. J Biol Chem. 1986 Mar 25;261(9):4139–4142. [PubMed] [Google Scholar]
  21. Palade P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+-induced Ca2+ release by organic polyamines. J Biol Chem. 1987 May 5;262(13):6149–6154. [PubMed] [Google Scholar]
  22. Pessah I. N., Stambuk R. A., Casida J. E. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides. Mol Pharmacol. 1987 Mar;31(3):232–238. [PubMed] [Google Scholar]
  23. Saito A., Inui M., Radermacher M., Frank J., Fleischer S. Ultrastructure of the calcium release channel of sarcoplasmic reticulum. J Cell Biol. 1988 Jul;107(1):211–219. doi: 10.1083/jcb.107.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schneider M. F. Membrane charge movement and depolarization-contraction coupling. Annu Rev Physiol. 1981;43:507–517. doi: 10.1146/annurev.ph.43.030181.002451. [DOI] [PubMed] [Google Scholar]
  25. Seino A., Kobayashi M., Kobayashi J., Fang Y. I., Ishibashi M., Nakamura H., Momose K., Ohizumi Y. 9-methyl-7-bromoeudistomin D, a powerful radio-labelable Ca++ releaser having caffeine-like properties, acts on Ca(++)-induced Ca++ release channels of sarcoplasmic reticulum. J Pharmacol Exp Ther. 1991 Mar;256(3):861–867. [PubMed] [Google Scholar]
  26. Smith J. S., Imagawa T., Ma J., Fill M., Campbell K. P., Coronado R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol. 1988 Jul;92(1):1–26. doi: 10.1085/jgp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Valdivia H. H., Kirby M. S., Lederer W. J., Coronado R. Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12185–12189. doi: 10.1073/pnas.89.24.12185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Volpe P., Damiani E., Maurer A., Tu A. T. Interaction of myotoxin a with the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Arch Biochem Biophys. 1986 Apr;246(1):90–97. doi: 10.1016/0003-9861(86)90452-2. [DOI] [PubMed] [Google Scholar]
  29. Wagenknecht T., Grassucci R., Frank J., Saito A., Inui M., Fleischer S. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature. 1989 Mar 9;338(6211):167–170. doi: 10.1038/338167a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES