Abstract
1. The involvement of presynaptic 5-hydroxytryptamine1A (5-HT1A) autoreceptors in the anxiolytic-like properties of lesopitron (E-4424) (2-(4-[4-(4-chloro-1-pyrazolyl)butyl]-1- piperazinyl)pyrimidine) was studied. Brain microdialysis was used to examine the effect of the drug on the release of 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the frontal cortex of awake, freely moving rats. Moreover, extracellular cortical 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were also studied to assess the possible participation of dopaminergic systems. 2. Lesopitron administered at a dose which induces anxiolytic behavior in rats (30 micrograms kg-1, i.p.) markedly reduced 5-HT levels (to 45% of the basal value) in cortical perfusates, having no effect on 5-HIAA, DOPAC and HVA. The effects of lesopitron were compared with those produced by the anxiolytic, and structurally related compound, buspirone. 3. Buspirone administered at a dose inducing anxiolytic-like effects in rats (5 mg kg-1, i.p.) produced a marked decrease in cortical 5-HT levels (to 20% of the basal value), but in contrast to lesopitron, buspirone produced a pronounced increase in cortical DOPAC (to 300% of the basal value) and HVA (to 400% of the basal value) levels. Buspirone administered at a low dose (30 micrograms kg-1, i.p.) was unable to affect cortical 5-HT levels. 4. To test the hypothesis that the 5-HT decreasing effect of lesopitron could be due to 5-HT1A autoreceptor (somatodendritic)-mediated inhibition of 5-HT neurotransmission, lesopitron was administered locally into the raphe nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adell A., Artigas F. Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo brain microdialysis study. Naunyn Schmiedebergs Arch Pharmacol. 1991 Mar;343(3):237–244. doi: 10.1007/BF00251121. [DOI] [PubMed] [Google Scholar]
- Adell A., Carceller A., Artigas F. In vivo brain dialysis study of the somatodendritic release of serotonin in the Raphe nuclei of the rat: effects of 8-hydroxy-2-(di-n-propylamino)tetralin. J Neurochem. 1993 May;60(5):1673–1681. doi: 10.1111/j.1471-4159.1993.tb13390.x. [DOI] [PubMed] [Google Scholar]
- Adell A., Sarna G. S., Hutson P. H., Curzon G. An in vivo dialysis and behavioural study of the release of 5-HT by p-chloroamphetamine in reserpine-treated rats. Br J Pharmacol. 1989 May;97(1):206–212. doi: 10.1111/j.1476-5381.1989.tb11943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amano M., Goto A., Sakai A., Achiha M., nee Hara, Takahashi N., Hara C., Ogawa N. Comparison of the anticonflict effect of buspirone and its major metabolite 1-(2-pyrimidinyl)-piperazine (1-PP) in rats. Jpn J Pharmacol. 1993 Apr;61(4):311–317. doi: 10.1254/jjp.61.311. [DOI] [PubMed] [Google Scholar]
- Costall B., Domeney A. M., Farre A. J., Kelly M. E., Martinez L., Naylor R. J. Profile of action of a novel 5-hydroxytryptamine1A receptor ligand E-4424 to inhibit aversive behavior in the mouse, rat and marmoset. J Pharmacol Exp Ther. 1992 Jul;262(1):90–98. [PubMed] [Google Scholar]
- Cowen P. J. Serotonin receptor subtypes: implications for psychopharmacology. Br J Psychiatry Suppl. 1991 Sep;(12):7–14. [PubMed] [Google Scholar]
- Crespi F., Garratt J. C., Sleight A. J., Marsden C. A. In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism. Neuroscience. 1990;35(1):139–144. doi: 10.1016/0306-4522(90)90128-q. [DOI] [PubMed] [Google Scholar]
- Fuller R. W., Perry K. W. Effects of buspirone and its metabolite, 1-(2-pyrimidinyl)piperazine, on brain monoamines and their metabolites in rats. J Pharmacol Exp Ther. 1989 Jan;248(1):50–56. [PubMed] [Google Scholar]
- Giral P., Soubrie P., Puech A. J. Pharmacological evidence for the involvement of 1-(2-pyridinyl)-piperazine (1-PmP) in the interaction of buspirone or gepirone with noradrenergic systems. Eur J Pharmacol. 1987 Jan 28;134(1):113–116. doi: 10.1016/0014-2999(87)90139-7. [DOI] [PubMed] [Google Scholar]
- Haj-Dahmane S., Jolas T., Laporte A. M., Gozlan H., Farré A. J., Hamon M., Lanfumey L. Interactions of lesopitron (E-4424) with central 5-HT1A receptors: in vitro and in vivo studies in the rat. Eur J Pharmacol. 1994 Apr 1;255(1-3):185–196. doi: 10.1016/0014-2999(94)90097-3. [DOI] [PubMed] [Google Scholar]
- Hamon M., Fattaccini C. M., Adrien J., Gallissot M. C., Martin P., Gozlan H. Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-hydroxytryptamine1A agonists with potential anxiolytic properties. J Pharmacol Exp Ther. 1988 Aug;246(2):745–752. [PubMed] [Google Scholar]
- Hjorth S., Sharp T. Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci. 1991;48(18):1779–1786. doi: 10.1016/0024-3205(91)90216-x. [DOI] [PubMed] [Google Scholar]
- Hutson P. H., Sarna G. S., O'Connell M. T., Curzon G. Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OHDPAT into the nucleus raphe dorsalis. Neurosci Lett. 1989 May 22;100(1-3):276–280. doi: 10.1016/0304-3940(89)90698-8. [DOI] [PubMed] [Google Scholar]
- Matthes H., Boschert U., Amlaiky N., Grailhe R., Plassat J. L., Muscatelli F., Mattei M. G., Hen R. Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. Mol Pharmacol. 1993 Mar;43(3):313–319. [PubMed] [Google Scholar]
- Monsma F. J., Jr, Shen Y., Ward R. P., Hamblin M. W., Sibley D. R. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol. 1993 Mar;43(3):320–327. [PubMed] [Google Scholar]
- Pazos A., Palacios J. M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 1985 Nov 4;346(2):205–230. doi: 10.1016/0006-8993(85)90856-x. [DOI] [PubMed] [Google Scholar]
- Pedigo N. W., Yamamura H. I., Nelson D. L. Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem. 1981 Jan;36(1):220–226. doi: 10.1111/j.1471-4159.1981.tb02397.x. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J., Schmidt A. W., Sleight A. J., Harrington M. A. Serotonin receptor "families" in the central nervous system: an overview. Ann N Y Acad Sci. 1990;600:104–113. doi: 10.1111/j.1749-6632.1990.tb16876.x. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J. Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biol Psychiatry. 1985 Sep;20(9):971–979. doi: 10.1016/0006-3223(85)90194-5. [DOI] [PubMed] [Google Scholar]
- Routledge C., Gurling J., Wright I. K., Dourish C. T. Neurochemical profile of the selective and silent 5-HT1A receptor antagonist WAY100135: an in vivo microdialysis study. Eur J Pharmacol. 1993 Aug 3;239(1-3):195–202. doi: 10.1016/0014-2999(93)90994-s. [DOI] [PubMed] [Google Scholar]
- Schechter L. E., Bolaños F. J., Gozlan H., Lanfumey L., Haj-Dahmane S., Laporte A. M., Fattaccini C. M., Hamon M. Alterations of central serotoninergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemical and electrophysiological studies. J Pharmacol Exp Ther. 1990 Dec;255(3):1335–1347. [PubMed] [Google Scholar]
- Schreiber R., De Vry J. 5-HT1A receptor ligands in animal models of anxiety, impulsivity and depression: multiple mechanisms of action? Prog Neuropsychopharmacol Biol Psychiatry. 1993 Jan;17(1):87–104. doi: 10.1016/0278-5846(93)90034-p. [DOI] [PubMed] [Google Scholar]
- Sharp T., Bramwell S. R., Grahame-Smith D. G. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol. 1989 Feb;96(2):283–290. doi: 10.1111/j.1476-5381.1989.tb11815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen Y., Monsma F. J., Jr, Metcalf M. A., Jose P. A., Hamblin M. W., Sibley D. R. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem. 1993 Aug 25;268(24):18200–18204. [PubMed] [Google Scholar]
- Skolnick P., Weissman B. A., Youdim M. B. Monoaminergic involvement in the pharmacological actions of buspirone. Br J Pharmacol. 1985 Nov;86(3):637–644. doi: 10.1111/j.1476-5381.1985.tb08940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprouse J. S., Aghajanian G. K. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9. doi: 10.1002/syn.890010103. [DOI] [PubMed] [Google Scholar]
- VanderMaelen C. P., Matheson G. K., Wilderman R. C., Patterson L. A. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol. 1986 Sep 23;129(1-2):123–130. doi: 10.1016/0014-2999(86)90343-2. [DOI] [PubMed] [Google Scholar]
- Verge D., Daval G., Patey A., Gozlan H., el Mestikawy S., Hamon M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985 Jul 31;113(3):463–464. doi: 10.1016/0014-2999(85)90099-8. [DOI] [PubMed] [Google Scholar]
- Young R., Urbancic A., Emrey T. A., Hall P. C., Metcalf G. Behavioral effects of several new anxiolytics and putative anxiolytics. Eur J Pharmacol. 1987 Nov 17;143(3):361–371. doi: 10.1016/0014-2999(87)90460-2. [DOI] [PubMed] [Google Scholar]