Abstract
1. The effects of vasopressin and deamino-8-D-arginine vasopressin (DDAVP, desmopressin) were studied in artery rings (0.8-1 mm in external diameter) obtained from portions of human omentum during the course of abdominal operations (27 patients). 2. In arterial rings under resting tension, vasopressin produced concentration-dependent, endothelium-independent contractions with an EC50 of 0.59 +/- 0.12 nM. The V1 antagonist d(CH2)5Tyr(Me)AVP (1 microM) and the mixed V1-V2 antagonist desGly-d(CH2)5D-Tyr(Et)ValAVP (0.01 microM) displaced the control curve to vasopressin to the right in a parallel manner without differences in the maximal responses. In the presence of indomethacin (1 microM) the contractile response to vasopressin was significantly increased (P < 0.01). 3. In precontracted arterial rings, previously treated with the V1 antagonist, d(CH2)5Tyr(Me)AVP (1 microM), vasopressin produced endothelium-dependent relaxation. This relaxation was reduced significantly (P < 0.05) by indomethacin (1 microM) and unaffected by the V1-V2 receptor antagonist desGly-d(CH2)5D-Tyr(Et)ValAVP (1 microM) or by NG-nitro-L-arginine methyl ester (L-NAME, 0.1 mM). 4. The selective V2 receptor agonist, DDAVP, caused endothelium-independent, concentration-dependent relaxations in precontracted arterial rings that were inhibited by the mixed V1-V2 receptor antagonist, but not by the V1 receptor antagonist or by pretreatment with indomethacin or L-NAME. 5. Results from this study suggest that vasopressin is primarily a constrictor of human mesenteric arteries by V1 receptor stimulation; vasopressin causes dilatation only during V1 receptor blockade. The relaxation appears to be mediated by the release of vasodilator prostaglandins from the endothelial cell layer and is independent of V2 receptor stimulation or release of nitric oxide.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altura B. M. Dose-response relationships for arginine vasopressin and synthetic analogs on three types of rat blood vessels: possible evidence for regional differences in vasopressin receptor sites within a mammal. J Pharmacol Exp Ther. 1975 May;193(2):413–423. [PubMed] [Google Scholar]
- Bichet D. G., Razi M., Arthus M. F., Lonergan M., Tittley P., Smiley R. K., Rock G., Hirsch D. J. Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus. Evidence for a pre-cyclic AMP V2 receptor defective mechanism. Kidney Int. 1989 Nov;36(5):859–866. doi: 10.1038/ki.1989.272. [DOI] [PubMed] [Google Scholar]
- Bichet D. G., Razi M., Lonergan M., Arthus M. F., Papukna V., Kortas C., Barjon J. N. Hemodynamic and coagulation responses to 1-desamino[8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med. 1988 Apr 7;318(14):881–887. doi: 10.1056/NEJM198804073181403. [DOI] [PubMed] [Google Scholar]
- Hassid A., Williams C. Vasoconstrictor-evoked prostaglandin synthesis in cultured vascular smooth muscle. Am J Physiol. 1983 Sep;245(3):C278–C282. doi: 10.1152/ajpcell.1983.245.3.C278. [DOI] [PubMed] [Google Scholar]
- Hasunuma K., Yamada K., Tamura Y., Yoshida S. Cardiovascular and renin responses to desmopressin in humans: role of prostacyclin and beta-adrenergic systems. Am J Physiol. 1991 Apr;260(4 Pt 2):H1031–H1036. doi: 10.1152/ajpheart.1991.260.4.H1031. [DOI] [PubMed] [Google Scholar]
- Hirsch A. T., Dzau V. J., Majzoub J. A., Creager M. A. Vasopressin-mediated forearm vasodilation in normal humans. Evidence for a vascular vasopressin V2 receptor. J Clin Invest. 1989 Aug;84(2):418–426. doi: 10.1172/JCI114182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jard S., Gaillard R. C., Guillon G., Marie J., Schoenenberg P., Muller A. F., Manning M., Sawyer W. H. Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol. 1986 Aug;30(2):171–177. [PubMed] [Google Scholar]
- Kinter L. B., Dytko G., Ashton D., McDonald J., Huffman W., Stassen F. Discovery and therapeutic utility of vasopressin antagonists in rats. J Cardiovasc Pharmacol. 1986;8 (Suppl 7):S36–S43. doi: 10.1097/00005344-198600087-00008. [DOI] [PubMed] [Google Scholar]
- Liard J. F. Cardiovascular effects associated with antidiuretic activity of vasopressin after blockade of its vasoconstrictor action in dehydrated dogs. Circ Res. 1986 May;58(5):631–640. doi: 10.1161/01.res.58.5.631. [DOI] [PubMed] [Google Scholar]
- Liard J. F. Effects of a specific antidiuretic agonist on cardiac output and its distribution in intact and anephric dogs. Clin Sci (Lond) 1988 Mar;74(3):293–299. doi: 10.1042/cs0740293. [DOI] [PubMed] [Google Scholar]
- Liard J. F. L-NAME antagonizes vasopressin V2-induced vasodilatation in dogs. Am J Physiol. 1994 Jan;266(1 Pt 2):H99–106. doi: 10.1152/ajpheart.1994.266.1.H99. [DOI] [PubMed] [Google Scholar]
- Liard J. F., Spadone J. C. Hemodynamic effects of antagonists of the vasoconstrictor action of vasopressin in conscious dogs. J Cardiovasc Pharmacol. 1984 Jul-Aug;6(4):713–719. doi: 10.1097/00005344-198407000-00026. [DOI] [PubMed] [Google Scholar]
- Liard J. F. cAMP and extrarenal vasopressin V2 receptors in dogs. Am J Physiol. 1992 Dec;263(6 Pt 2):H1888–H1891. doi: 10.1152/ajpheart.1992.263.6.H1888. [DOI] [PubMed] [Google Scholar]
- Lluch S., Conde M. V., Diéguez G., López de Pablo A. L., González M. C., Estrada C., Gómez B. Evidence for the direct effect of vasopressin on human and goat cerebral arteries. J Pharmacol Exp Ther. 1984 Mar;228(3):749–755. [PubMed] [Google Scholar]
- László F. A., László F., Jr, De Wied D. Pharmacology and clinical perspectives of vasopressin antagonists. Pharmacol Rev. 1991 Mar;43(1):73–108. [PubMed] [Google Scholar]
- Martin W., Furchgott R. F., Villani G. M., Jothianandan D. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther. 1986 May;237(2):529–538. [PubMed] [Google Scholar]
- Martín de Aguilera E., Vila J. M., Irurzun A., Martínez M. C., Martínez Cuesta M. A., Lluch S. Endothelium-independent contractions of human cerebral arteries in response to vasopressin. Stroke. 1990 Dec;21(12):1689–1693. doi: 10.1161/01.str.21.12.1689. [DOI] [PubMed] [Google Scholar]
- Michell R. H., Kirk C. J., Billah M. M. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979 Oct;7(5):861–865. doi: 10.1042/bst0070861. [DOI] [PubMed] [Google Scholar]
- Ohlstein E. H., Berkowitz B. A. Human vascular vasopressin receptors: analysis with selective vasopressin receptor antagonists. J Pharmacol Exp Ther. 1986 Dec;239(3):737–741. [PubMed] [Google Scholar]
- Penit J., Faure M., Jard S. Vasopressin and angiotensin II receptors in rat aortic smooth muscle cells in culture. Am J Physiol. 1983 Jan;244(1):E72–E82. doi: 10.1152/ajpendo.1983.244.1.E72. [DOI] [PubMed] [Google Scholar]
- Randall M. D., Kay A. P., Hiley C. R. Endothelium-dependent modulation of the pressor activity of arginine vasopressin in the isolated superior mesenteric arterial bed of the rat. Br J Pharmacol. 1988 Oct;95(2):646–652. doi: 10.1111/j.1476-5381.1988.tb11687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawyer W. H., Manning M. The use of antagonists of vasopressin in studies of its physiological functions. Fed Proc. 1985 Jan;44(1 Pt 1):78–80. [PubMed] [Google Scholar]
- Takayasu M., Kajita Y., Suzuki Y., Shibuya M., Sugita K., Ishikawa T., Hidaka H. Triphasic response of rat intracerebral arterioles to increasing concentrations of vasopressin in vitro. J Cereb Blood Flow Metab. 1993 Mar;13(2):304–309. doi: 10.1038/jcbfm.1993.38. [DOI] [PubMed] [Google Scholar]
- Vanner S., Jiang M. M., Brooks V. L., Surprenant A. Characterization of vasopressin actions in isolated submucosal arterioles of the intestinal microcirculation. Circ Res. 1990 Oct;67(4):1017–1026. doi: 10.1161/01.res.67.4.1017. [DOI] [PubMed] [Google Scholar]
