Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Oct;113(2):499–507. doi: 10.1111/j.1476-5381.1994.tb17017.x

Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions.

J Church 1, E J Fletcher 1, K Baxter 1, J F MacDonald 1
PMCID: PMC1510127  PMID: 7834201

Abstract

1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
499

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adeagbo A. S., Magbagbeola A. O. Pharmacological actions of ifenprodil in the rat isolated anococcygeus muscle. J Pharm Pharmacol. 1985 Nov;37(11):833–835. doi: 10.1111/j.2042-7158.1985.tb04982.x. [DOI] [PubMed] [Google Scholar]
  2. Annels S. J., Ellis Y., Davies J. A. Non-opioid antitussives inhibit endogenous glutamate release from rabbit hippocampal slices. Brain Res. 1991 Nov 15;564(2):341–343. doi: 10.1016/0006-8993(91)91474-f. [DOI] [PubMed] [Google Scholar]
  3. Araneda R. C., Zukin R. S., Bennett M. V. Effects of polyamines on NMDA-induced currents in rat hippocampal neurons: a whole-cell and single-channel study. Neurosci Lett. 1993 Apr 2;152(1-2):107–112. doi: 10.1016/0304-3940(93)90495-7. [DOI] [PubMed] [Google Scholar]
  4. Bakker M. H., McKernan R. M., Wong E. H., Foster A. C. [3H]MK-801 binding to N-methyl-D-aspartate receptors solubilized from rat brain: effects of glycine site ligands, polyamines, ifenprodil, and desipramine. J Neurochem. 1991 Jul;57(1):39–45. doi: 10.1111/j.1471-4159.1991.tb02096.x. [DOI] [PubMed] [Google Scholar]
  5. Benavides J., Peny B., Allen J., Scatton B. Pharmacological characterization of in vivo [3H]lfenprodil binding sites in the mouse brain. J Pharmacol Exp Ther. 1992 Feb;260(2):896–901. [PubMed] [Google Scholar]
  6. Benveniste M., Mayer M. L. Multiple effects of spermine on N-methyl-D-aspartic acid receptor responses of rat cultured hippocampal neurones. J Physiol. 1993 May;464:131–163. doi: 10.1113/jphysiol.1993.sp019627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bertolino M., Llinás R. R. The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol. 1992;32:399–421. doi: 10.1146/annurev.pa.32.040192.002151. [DOI] [PubMed] [Google Scholar]
  8. Bowman D., Alexander S., Lodge D. Pharmacological characterisation of the calcium channels coupled to the plateau phase of KCl-induced intracellular free Ca2+ elevation in chicken and rat synaptosomes. Neuropharmacology. 1993 Nov;32(11):1195–1202. doi: 10.1016/0028-3908(93)90013-s. [DOI] [PubMed] [Google Scholar]
  9. Chenard B. L., Shalaby I. A., Koe B. K., Ronau R. T., Butler T. W., Prochniak M. A., Schmidt A. W., Fox C. B. Separation of alpha 1 adrenergic and N-methyl-D-aspartate antagonist activity in a series of ifenprodil compounds. J Med Chem. 1991 Oct;34(10):3085–3090. doi: 10.1021/jm00114a018. [DOI] [PubMed] [Google Scholar]
  10. Church J., Fletcher E. J., Abdel-Hamid K., MacDonald J. F. Loperamide blocks high-voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons. Mol Pharmacol. 1994 Apr;45(4):747–757. [PubMed] [Google Scholar]
  11. Cousin M. A., Nicholls D. G., Pocock J. M. Flunarizine inhibits both calcium-dependent and -independent release of glutamate from synaptosomes and cultured neurones. Brain Res. 1993 Mar 26;606(2):227–236. doi: 10.1016/0006-8993(93)90989-z. [DOI] [PubMed] [Google Scholar]
  12. Czuczwar S. J., Gasior M., Janusz W., Kleinrok Z. Influence of flunarizine, nicardipine and nimodipine on the anticonvulsant activity of different antiepileptic drugs in mice. Neuropharmacology. 1992 Nov;31(11):1179–1183. doi: 10.1016/0028-3908(92)90015-h. [DOI] [PubMed] [Google Scholar]
  13. De Sarro G. B., De Sarro A. Anticonvulsant properties of non-competitive antagonists of the N-methyl-D-aspartate receptor in genetically epilepsy-prone rats: comparison with CPPene. Neuropharmacology. 1993 Jan;32(1):51–58. doi: 10.1016/0028-3908(93)90129-q. [DOI] [PubMed] [Google Scholar]
  14. Deshpande J. K., Wieloch T. Flunarizine, a calcium entry blocker, ameliorates ischemic brain damage in the rat. Anesthesiology. 1986 Feb;64(2):215–224. doi: 10.1097/00000542-198602000-00015. [DOI] [PubMed] [Google Scholar]
  15. Durand G. M., Gregor P., Zheng X., Bennett M. V., Uhl G. R., Zukin R. S. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9359–9363. doi: 10.1073/pnas.89.19.9359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ffrench-Mullen J. M., Rogawski M. A. Phencyclidine block of calcium current in isolated guinea-pig hippocampal neurones. J Physiol. 1992 Oct;456:85–105. doi: 10.1113/jphysiol.1992.sp019328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Hashimoto K., London E. D. Further characterization of [3H]ifenprodil binding to sigma receptors in rat brain. Eur J Pharmacol. 1993 May 12;236(1):159–163. doi: 10.1016/0014-2999(93)90241-9. [DOI] [PubMed] [Google Scholar]
  19. Heinemann U., Hamon B. Calcium and epileptogenesis. Exp Brain Res. 1986;65(1):1–10. doi: 10.1007/BF00243826. [DOI] [PubMed] [Google Scholar]
  20. Herman M. D., Reuveny E., Narahashi T. The effect of polyamines on voltage-activated calcium channels in mouse neuroblastoma cells. J Physiol. 1993 Mar;462:645–660. doi: 10.1113/jphysiol.1993.sp019574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Honda H., Sakai Y., Iwata T., Ohba S., Kanezuka T., Irino O. Effects of ifenprodil tartrate on alpha-adrenoceptors and Ca2+ movement in isolated canine saphenous veins. Arch Int Pharmacodyn Ther. 1988 Mar-Apr;292:112–121. [PubMed] [Google Scholar]
  22. Honda H., Sakai Y. The mode of action of ifenprodil tartrate in isolated canine cerebral and femoral arteries. Arch Int Pharmacodyn Ther. 1987 Feb;285(2):211–225. [PubMed] [Google Scholar]
  23. Honda H., Shibuya T., Salafsky B. Effects of ifenprodil tartrate on calcium flux in arteries and brain synaptosomes. Proc West Pharmacol Soc. 1989;32:155–158. [PubMed] [Google Scholar]
  24. Legendre P., Westbrook G. L. Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism. Mol Pharmacol. 1991 Aug;40(2):289–298. [PubMed] [Google Scholar]
  25. Luebke J. I., Dunlap K., Turner T. J. Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron. 1993 Nov;11(5):895–902. doi: 10.1016/0896-6273(93)90119-c. [DOI] [PubMed] [Google Scholar]
  26. Löscher W., Hönack D. Differences in anticonvulsant potency and adverse effects between dextromethorphan and dextrorphan in amygdala-kindled and non-kindled rats. Eur J Pharmacol. 1993 Jul 20;238(2-3):191–200. doi: 10.1016/0014-2999(93)90847-b. [DOI] [PubMed] [Google Scholar]
  27. MacDonald J. F., Bartlett M. C., Mody I., Pahapill P., Reynolds J. N., Salter M. W., Schneiderman J. H., Pennefather P. S. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J Physiol. 1991 Jan;432:483–508. doi: 10.1113/jphysiol.1991.sp018396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MacDonald J. F., Mody I., Salter M. W. Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J Physiol. 1989 Jul;414:17–34. doi: 10.1113/jphysiol.1989.sp017674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mangano T. J., Patel J., Salama A. I., Keith R. A. Inhibition of K(+)-evoked [3H]D-aspartate release and neuronal calcium influx by verapamil, diltiazem and dextromethorphan: evidence for non-L/non-N voltage-sensitive calcium channels. Eur J Pharmacol. 1991 Jan 3;192(1):9–17. doi: 10.1016/0014-2999(91)90062-u. [DOI] [PubMed] [Google Scholar]
  30. Mintz I. M., Venema V. J., Swiderek K. M., Lee T. D., Bean B. P., Adams M. E. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature. 1992 Feb 27;355(6363):827–829. doi: 10.1038/355827a0. [DOI] [PubMed] [Google Scholar]
  31. Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P. H. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992 May 22;256(5060):1217–1221. doi: 10.1126/science.256.5060.1217. [DOI] [PubMed] [Google Scholar]
  32. Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature. 1991 Nov 7;354(6348):31–37. doi: 10.1038/354031a0. [DOI] [PubMed] [Google Scholar]
  33. Netzer R., Pflimlin P., Trube G. Dextromethorphan blocks N-methyl-D-aspartate-induced currents and voltage-operated inward currents in cultured cortical neurons. Eur J Pharmacol. 1993 Jul 20;238(2-3):209–216. doi: 10.1016/0014-2999(93)90849-d. [DOI] [PubMed] [Google Scholar]
  34. Prince D. A., Feeser H. R. Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neurosci Lett. 1988 Mar 10;85(3):291–296. doi: 10.1016/0304-3940(88)90581-2. [DOI] [PubMed] [Google Scholar]
  35. Pullan L. M., Keith R. A., LaMonte D., Stumpo R. J., Salama A. I. The polyamine spermine affects omega-conotoxin binding and function at N-type voltage-sensitive calcium channels. J Auton Pharmacol. 1990 Aug;10(4):213–219. doi: 10.1111/j.1474-8673.1990.tb00020.x. [DOI] [PubMed] [Google Scholar]
  36. Ransom R. W., Stec N. L. Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J Neurochem. 1988 Sep;51(3):830–836. doi: 10.1111/j.1471-4159.1988.tb01818.x. [DOI] [PubMed] [Google Scholar]
  37. Reynolds I. J., Miller R. J. Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: interaction with polyamines. Mol Pharmacol. 1989 Nov;36(5):758–765. [PubMed] [Google Scholar]
  38. Rock D. M., Macdonald R. L. The polyamine spermine has multiple actions on N-methyl-D-aspartate receptor single-channel currents in cultured cortical neurons. Mol Pharmacol. 1992 Jan;41(1):83–88. [PubMed] [Google Scholar]
  39. Rothman R. B., Reid A., Mahboubi A., Kim C. H., De Costa B. R., Jacobson A. E., Rice K. C. Labeling by [3H]1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands. Mol Pharmacol. 1991 Feb;39(2):222–232. [PubMed] [Google Scholar]
  40. Schoemaker H., Allen J., Langer S. Z. Binding of [3H]ifenprodil, a novel NMDA antagonist, to a polyamine-sensitive site in the rat cerebral cortex. Eur J Pharmacol. 1990 Feb 6;176(2):249–250. doi: 10.1016/0014-2999(90)90539-i. [DOI] [PubMed] [Google Scholar]
  41. Schoemaker H. Polyamines allosterically modulate [3H]nitrendipine binding to the voltage-sensitive calcium channel in rat brain. Eur J Pharmacol. 1992 Feb 13;225(2):167–169. doi: 10.1016/0922-4106(92)90097-f. [DOI] [PubMed] [Google Scholar]
  42. Scott R. H., Sutton K. G., Dolphin A. C. Interactions of polyamines with neuronal ion channels. Trends Neurosci. 1993 Apr;16(4):153–160. doi: 10.1016/0166-2236(93)90124-5. [DOI] [PubMed] [Google Scholar]
  43. Siesjö B. K., Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab. 1989 Apr;9(2):127–140. doi: 10.1038/jcbfm.1989.20. [DOI] [PubMed] [Google Scholar]
  44. Tytgat J., Pauwels P. J., Vereecke J., Carmeliet E. Flunarizine inhibits a high-threshold inactivating calcium channel (N-type) in isolated hippocampal neurons. Brain Res. 1991 May 17;549(1):112–117. doi: 10.1016/0006-8993(91)90606-v. [DOI] [PubMed] [Google Scholar]
  45. Williams K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol. 1993 Oct;44(4):851–859. [PubMed] [Google Scholar]
  46. Williams K., Romano C., Dichter M. A., Molinoff P. B. Modulation of the NMDA receptor by polyamines. Life Sci. 1991;48(6):469–498. doi: 10.1016/0024-3205(91)90463-l. [DOI] [PubMed] [Google Scholar]
  47. Wong E. H., Kemp J. A. Sites for antagonism on the N-methyl-D-aspartate receptor channel complex. Annu Rev Pharmacol Toxicol. 1991;31:401–425. doi: 10.1146/annurev.pa.31.040191.002153. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES