Abstract
1. The aims of the present study were to determine whether long-term 5-hydroxytryptamine (5-HT) reuptake blockade and inhibition of type-A monoamine oxidase (MAO-A) lead to an enhancement of the electrically evoked release of tritum from guinea-pig brain slices preloaded with [3H]-5-HT, and to assess the sensitivity of the terminal 5-HT1D autoreceptor, the alpha 2-adrenoceptor also located on 5-HT terminals, and the 5-HT3 receptor that modulates 5-HT release following these two types of antidepressant treatments. 2. The electrically evoked release of tritium was significantly enhanced following a 21-day treatment with the 5-HT reuptake blocker, paroxetine and the reversible MAO-A inhibitor, befloxatone, in preloaded slices of the hypothalamus, hippocampus and frontal cortex 48 h after removal of the osmotic minipumps used to deliver the drugs. 3. The inhibitory effect of the terminal 5-HT autoreceptor agonist, 5-methoxytryptamine, on the evoked release of tritium was attenuated in slices of the hypothalamus, hippocampus, but not frontal cortex, following the paroxetine treatment. In the befloxatone group, the effectiveness of 5-methoxytryptamine was unaltered in the same brain structures. 4. The sensitivity of the alpha 2-adrenoceptor on 5-HT terminals, assessed using UK 14.304, was attenuated in hypothalamus, hippocampus, but not frontal cortex slices prepared from befloxatone-treated guinea-pigs and preloaded with [3H]-5-HT. The paroxetine treatment did not alter the sensitivity of this alpha 2-adrenoceptor in the hypothalamus. 5. The sensitivity of the alpha 2-adrenoceptor on noradrenaline terminals, also assessed using UK 14.304, was not altered in hippocampus and hypothalamus slices preloaded with [3H]-noradrenaline following the long-term befloxatone treatment. 6. In frontal cortex slices, [3H]-5-HT uptake was no longer significantly attenuated after a 21-day treatment with paroxetine, whereas it was still markedly inhibited in hypothalamus slices. The enhancing effect of paroxetine on the evoked release of [3H]-5-HT in the superfusion medium was no longer evident in frontal cortex slices of the paroxetine group. These data indicate that long-term 5-HT reuptake blockade desensitized the 5-HT transporter in the frontal cortex. 7. The capacity of the 5-HT3 receptor agonist, 2 methyl-5-HT, to enhance the electrically evoked release of tritium was not altered in hypothalamus, hippocampus, and frontal cortex slices prepared from befloxatone-treated guinea-pigs, but was significantly attenuated in the paroxetine group also treated for 21 days.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF![485](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/ab2430d24a23/brjpharm00171-0162.png)
![486](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/5fb1947653d6/brjpharm00171-0163.png)
![487](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/4eed340e7485/brjpharm00171-0164.png)
![488](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/de73e0244628/brjpharm00171-0165.png)
![489](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/b84498746299/brjpharm00171-0166.png)
![490](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/d40c3a05ac15/brjpharm00171-0167.png)
![491](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/e3f9dc821555/brjpharm00171-0168.png)
![492](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/280ac8aa0a76/brjpharm00171-0169.png)
![493](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/9f279cfe0b39/brjpharm00171-0170.png)
![494](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/ea878792d90a/brjpharm00171-0171.png)
![495](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a0/1510133/c5f125862056/brjpharm00171-0172.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azzaro A. J., King J., Kotzuk J., Schoepp D. D., Frost J., Schochet S. Guinea pig striatum as a model of human dopamine deamination: the role of monoamine oxidase isozyme ratio, localization, and affinity for substrate in synaptic dopamine metabolism. J Neurochem. 1985 Sep;45(3):949–956. doi: 10.1111/j.1471-4159.1985.tb04086.x. [DOI] [PubMed] [Google Scholar]
- Baumann P. A., Waldmeier P. C. Further evidence for negative feedback control of serotonin release in the central nervous system. Naunyn Schmiedebergs Arch Pharmacol. 1981 Aug;317(1):36–43. doi: 10.1007/BF00506254. [DOI] [PubMed] [Google Scholar]
- Bergeron R., Blier P. Cisapride for the treatment of nausea produced by selective serotonin reuptake inhibitors. Am J Psychiatry. 1994 Jul;151(7):1084–1086. doi: 10.1176/ajp.151.7.1084. [DOI] [PubMed] [Google Scholar]
- Blier P., Bouchard C. Functional characterization of a 5-HT3 receptor which modulates the release of 5-HT in the guinea-pig brain. Br J Pharmacol. 1993 Jan;108(1):13–22. doi: 10.1111/j.1476-5381.1993.tb13433.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blier P., Chaput Y., de Montigny C. Long-term 5-HT reuptake blockade, but not monoamine oxidase inhibition, decreases the function of terminal 5-HT autoreceptors: an electrophysiological study in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1988 Mar;337(3):246–254. doi: 10.1007/BF00168834. [DOI] [PubMed] [Google Scholar]
- Blier P., Galzin A. M., Langer S. Z. Interaction between serotonin uptake inhibitors and alpha-2 adrenergic heteroreceptors in the rat hypothalamus. J Pharmacol Exp Ther. 1990 Jul;254(1):236–244. [PubMed] [Google Scholar]
- Blier P., Monroe P. J., Bouchard C., Smith D. L., Smith D. J. 5-HT3 receptors which modulate [3H]5-HT release in the guinea pig hypothalamus are not autoreceptors. Synapse. 1993 Oct;15(2):143–148. doi: 10.1002/syn.890150206. [DOI] [PubMed] [Google Scholar]
- Blier P., de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci. 1994 Jul;15(7):220–226. doi: 10.1016/0165-6147(94)90315-8. [DOI] [PubMed] [Google Scholar]
- Chaput Y., de Montigny C., Blier P. Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1986 Aug;333(4):342–348. doi: 10.1007/BF00500007. [DOI] [PubMed] [Google Scholar]
- Chaput Y., de Montigny C., Blier P. Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments. An in vivo electrophysiologic study in the rat. Neuropsychopharmacology. 1991 Dec;5(4):219–229. [PubMed] [Google Scholar]
- Delgado P. L., Charney D. S., Price L. H., Aghajanian G. K., Landis H., Heninger G. R. Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry. 1990 May;47(5):411–418. doi: 10.1001/archpsyc.1990.01810170011002. [DOI] [PubMed] [Google Scholar]
- Feuerstein T. J., Mutschler A., Lupp A., Van Velthoven V., Schlicker E., Göthert M. Endogenous noradrenaline activates alpha 2-adrenoceptors on serotonergic nerve endings in human and rat neocortex. J Neurochem. 1993 Aug;61(2):474–480. doi: 10.1111/j.1471-4159.1993.tb02148.x. [DOI] [PubMed] [Google Scholar]
- Galzin A. M., Poirier M. F., Lista A., Chodkiewicz J. P., Blier P., Ramdine R., Loô H., Roux F. X., Redondo A., Langer S. Z. Characterization of the 5-hydroxytryptamine receptor modulating the release of 5-[3H]hydroxytryptamine in slices of the human neocortex. J Neurochem. 1992 Oct;59(4):1293–1301. doi: 10.1111/j.1471-4159.1992.tb08440.x. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Middlemiss D. N. Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci. 1989 Apr;10(4):130–132. doi: 10.1016/0165-6147(89)90159-4. [DOI] [PubMed] [Google Scholar]
- Hrdina P. D., Vu T. B. Chronic fluoxetine treatment upregulates 5-HT uptake sites and 5-HT2 receptors in rat brain: an autoradiographic study. Synapse. 1993 Aug;14(4):324–331. doi: 10.1002/syn.890140410. [DOI] [PubMed] [Google Scholar]
- Jacobs B. L. Single unit activity of brain monoamine-containing neurons in freely moving animals. Ann N Y Acad Sci. 1986;473:70–77. doi: 10.1111/j.1749-6632.1986.tb23604.x. [DOI] [PubMed] [Google Scholar]
- Lesch K. P., Aulakh C. S., Wolozin B. L., Tolliver T. J., Hill J. L., Murphy D. L. Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants. Brain Res Mol Brain Res. 1993 Jan;17(1-2):31–35. doi: 10.1016/0169-328x(93)90069-2. [DOI] [PubMed] [Google Scholar]
- Menkes D. B., Aghajanian G. K., McCall R. B. Chronic antidepressant treatment enhances alpha-adrenergic and serotonergic responses in the facial nucleus. Life Sci. 1980 Jul 7;27(1):45–55. doi: 10.1016/0024-3205(80)90018-1. [DOI] [PubMed] [Google Scholar]
- Menkes D. B., Aghajanian G. K. alpha 1-Adrenoceptor-mediated responses in the lateral geniculate nucleus are enhanced by chronic antidepressant treatment. Eur J Pharmacol. 1981 Aug 27;74(1):27–35. doi: 10.1016/0014-2999(81)90319-8. [DOI] [PubMed] [Google Scholar]
- Mongeau R., Blier P., de Montigny C. In vivo electrophysiological evidence for tonic activation by endogenous noradrenaline of alpha 2-adrenoceptors on 5-hydroxytryptamine terminals in the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1993 Mar;347(3):266–272. doi: 10.1007/BF00167444. [DOI] [PubMed] [Google Scholar]
- Mongeau R., de Montigny C., Blier P. Electrophysiologic evidence for desensitization of alpha 2-adrenoceptors on serotonin terminals following long-term treatment with drugs increasing norepinephrine synaptic concentration. Neuropsychopharmacology. 1994 Feb;10(1):41–51. doi: 10.1038/npp.1994.6. [DOI] [PubMed] [Google Scholar]
- Moret C., Briley M. Modulation by drugs of the release of total tritium and 3H-5-HT from rat hypothalamic slices. Naunyn Schmiedebergs Arch Pharmacol. 1990 May;341(5):398–403. doi: 10.1007/BF00176330. [DOI] [PubMed] [Google Scholar]
- Moret C., Briley M. Serotonin autoreceptor subsensitivity and antidepressant activity. Eur J Pharmacol. 1990 May 16;180(2-3):351–356. doi: 10.1016/0014-2999(90)90320-6. [DOI] [PubMed] [Google Scholar]
- Passarelli F., Galzin A. M., Langer S. Z. Interaction between neuronal uptake inhibitors and presynaptic serotonin autoreceptors in rat hypothalamic slices: comparison of K+ and electrical depolarization. J Pharmacol Exp Ther. 1987 Sep;242(3):1056–1063. [PubMed] [Google Scholar]
- Piñeyro G., Blier P., Dennis T., de Montigny C. Desensitization of the neuronal 5-HT carrier following its long-term blockade. J Neurosci. 1994 May;14(5 Pt 2):3036–3047. doi: 10.1523/JNEUROSCI.14-05-03036.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raiteri M., Maura G., Folghera S., Cavazzani P., Andrioli G. C., Schlicker E., Schalnus R., Göthert M. Modulation of 5-hydroxytryptamine release by presynaptic inhibitory alpha 2-adrenoceptors in the human cerebral cortex. Naunyn Schmiedebergs Arch Pharmacol. 1990 Nov;342(5):508–512. doi: 10.1007/BF00169037. [DOI] [PubMed] [Google Scholar]
- Shopsin B., Friedman E., Gershon S. Parachlorophenylalanine reversal of tranylcypromine effects in depressed patients. Arch Gen Psychiatry. 1976 Jul;33(7):811–819. doi: 10.1001/archpsyc.1976.01770070041003. [DOI] [PubMed] [Google Scholar]
- Starke K., Göthert M., Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev. 1989 Jul;69(3):864–989. doi: 10.1152/physrev.1989.69.3.864. [DOI] [PubMed] [Google Scholar]
- Wang R. Y., Aghajanian G. K. Enhanced sensitivity of amygdaloid neurons to serotonin and norepinephrine after chronic antidepressant treatment. Commun Psychopharmacol. 1980;4(1):83–90. [PubMed] [Google Scholar]
- de Montigny C., Aghajanian G. K. Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin. Science. 1978 Dec 22;202(4374):1303–1306. doi: 10.1126/science.725608. [DOI] [PubMed] [Google Scholar]