Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jan;114(1):138–142. doi: 10.1111/j.1476-5381.1995.tb14917.x

Increase in tone and intracellular Ca2+ in rabbit isolated ear artery by platelet-derived growth factor.

A D Hughes 1
PMCID: PMC1510153  PMID: 7712009

Abstract

1. The effect of platelet-derived growth factor (PDGF-AB) on tone and intracellular Ca2+ ([Ca2+]i) was examined in rabbit isolated ear arteries. Arteries were mounted in a myograph and loaded with the Ca(2+)-sensitive fluorescent indicator, fura-2, for concurrent measurements of isometric force and [Ca2+]i. 2. PDGF-AB contracted rabbit ear artery in a concentration-dependent manner. PDGF-AB induced tone was associated with a rise in [Ca2+]i. In the presence of noradrenaline, PDGF-AB induced a similar rise in [Ca2+]i but contraction in response to PDGF-AB in the presence of noradrenaline was increased compared with PDGF-AB alone. 3. PDGF-AB-induced rise in [Ca2+]i and tone were abolished by removal of extracellular Ca2+ (with addition of BAPTA, a Ca2+ chelator), and by preincubation with a dihydropyridine calcium channel blocker, (-)-202,791. Bistyrphostin, a selective inhibitor of tyrosine kinases, also inhibited PDGF-AB-induced tone, but had no effect on noradrenaline- or potassium-induced tone. 4. PDGF-AB contracts rabbit ear artery by increasing Ca2+ entry through voltage-operated calcium channels. This effect involves activation of a tyrosine kinase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassett J. E., Bowen-Pope D. F., Takayasu M., Dacey R. G., Jr Platelet-derived growth factor does not constrict rat intracerebral arterioles in vitro. Microvasc Res. 1988 May;35(3):368–373. doi: 10.1016/0026-2862(88)90091-x. [DOI] [PubMed] [Google Scholar]
  2. Berk B. C., Alexander R. W., Brock T. A., Gimbrone M. A., Jr, Webb R. C. Vasoconstriction: a new activity for platelet-derived growth factor. Science. 1986 Apr 4;232(4746):87–90. doi: 10.1126/science.3485309. [DOI] [PubMed] [Google Scholar]
  3. Berk B. C., Alexander R. W. Vasoactive effects of growth factors. Biochem Pharmacol. 1989 Jan 15;38(2):219–225. doi: 10.1016/0006-2952(89)90030-0. [DOI] [PubMed] [Google Scholar]
  4. Bilder G. E., Krawiec J. A., McVety K., Gazit A., Gilon C., Lyall R., Zilberstein A., Levitzki A., Perrone M. H., Schreiber A. B. Tyrphostins inhibit PDGF-induced DNA synthesis and associated early events in smooth muscle cells. Am J Physiol. 1991 Apr;260(4 Pt 1):C721–C730. doi: 10.1152/ajpcell.1991.260.4.C721. [DOI] [PubMed] [Google Scholar]
  5. Bobik A., Campbell J. H. Vascular derived growth factors: cell biology, pathophysiology, and pharmacology. Pharmacol Rev. 1993 Mar;45(1):1–42. [PubMed] [Google Scholar]
  6. Cirillo M., Quinn S. J., Romero J. R., Canessa M. L. Regulation of Ca2+ transport by platelet-derived growth factor-BB in rat vascular smooth muscle cells. Circ Res. 1993 Apr;72(4):847–856. doi: 10.1161/01.res.72.4.847. [DOI] [PubMed] [Google Scholar]
  7. Di Salvo J., Steusloff A., Semenchuk L., Satoh S., Kolquist K., Pfitzer G. Tyrosine kinase inhibitors suppress agonist-induced contraction in smooth muscle. Biochem Biophys Res Commun. 1993 Feb 15;190(3):968–974. doi: 10.1006/bbrc.1993.1144. [DOI] [PubMed] [Google Scholar]
  8. Gazit A., Yaish P., Gilon C., Levitzki A. Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem. 1989 Oct;32(10):2344–2352. doi: 10.1021/jm00130a020. [DOI] [PubMed] [Google Scholar]
  9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  10. Hart C. E., Forstrom J. W., Kelly J. D., Seifert R. A., Smith R. A., Ross R., Murray M. J., Bowen-Pope D. F. Two classes of PDGF receptor recognize different isoforms of PDGF. Science. 1988 Jun 10;240(4858):1529–1531. doi: 10.1126/science.2836952. [DOI] [PubMed] [Google Scholar]
  11. Heldin C. H., Westermark B., Wasteson A. Demonstration of an antibody against platelet-derived growth factor. Exp Cell Res. 1981 Dec;136(2):255–261. doi: 10.1016/0014-4827(81)90003-3. [DOI] [PubMed] [Google Scholar]
  12. Hirata K., Kikuchi A., Sasaki T., Kuroda S., Kaibuchi K., Matsuura Y., Seki H., Saida K., Takai Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem. 1992 May 5;267(13):8719–8722. [PubMed] [Google Scholar]
  13. Jensen P. E., Hughes A., Boonen H. C., Aalkjaer C. Force, membrane potential, and [Ca2+]i during activation of rat mesenteric small arteries with norepinephrine, potassium, aluminum fluoride, and phorbol ester. Effects of changes in pHi. Circ Res. 1993 Aug;73(2):314–324. doi: 10.1161/01.res.73.2.314. [DOI] [PubMed] [Google Scholar]
  14. Jensen P. E., Mulvany M. J., Aalkjaer C. Endogenous and exogenous agonist-induced changes in the coupling between [Ca2+]i and force in rat resistance arteries. Pflugers Arch. 1992 Apr;420(5-6):536–543. doi: 10.1007/BF00374630. [DOI] [PubMed] [Google Scholar]
  15. Kawahara Y., Kariya K., Araki S., Fukuzaki H., Takai Y. Platelet-derived growth factor (PDGF)-induced phospholipase C-mediated hydrolysis of phosphoinositides in vascular smooth muscle cells--different sensitivity of PDGF- and angiotensin II-induced phospholipase C reactions to protein kinase C-activating phorbol esters. Biochem Biophys Res Commun. 1988 Oct 31;156(2):846–854. doi: 10.1016/s0006-291x(88)80921-5. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi S., Nishimura J., Kanaide H. Cytosolic Ca2+ transients are not required for platelet-derived growth factor to induce cell cycle progression of vascular smooth muscle cells in primary culture. Actions of tyrosine kinase. J Biol Chem. 1994 Mar 25;269(12):9011–9018. [PubMed] [Google Scholar]
  17. Kohler N., Lipton A. Platelets as a source of fibroblast growth-promoting activity. Exp Cell Res. 1974 Aug;87(2):297–301. doi: 10.1016/0014-4827(74)90484-4. [DOI] [PubMed] [Google Scholar]
  18. Levitzki A., Gilon C. Tyrphostins as molecular tools and potential antiproliferative drugs. Trends Pharmacol Sci. 1991 May;12(5):171–174. doi: 10.1016/0165-6147(91)90538-4. [DOI] [PubMed] [Google Scholar]
  19. Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
  20. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  21. Pazin M. J., Williams L. T. Triggering signaling cascades by receptor tyrosine kinases. Trends Biochem Sci. 1992 Oct;17(10):374–378. doi: 10.1016/0968-0004(92)90003-r. [DOI] [PubMed] [Google Scholar]
  22. Ross R., Bowen-Pope D. F., Raines E. W. Platelet-derived growth factor and its role in health and disease. Philos Trans R Soc Lond B Biol Sci. 1990 Mar 12;327(1239):155–169. doi: 10.1098/rstb.1990.0051. [DOI] [PubMed] [Google Scholar]
  23. Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. doi: 10.1126/science.3018928. [DOI] [PubMed] [Google Scholar]
  24. Satoh S., Rensland H., Pfitzer G. Ras proteins increase Ca(2+)-responsiveness of smooth muscle contraction. FEBS Lett. 1993 Jun 14;324(2):211–215. doi: 10.1016/0014-5793(93)81395-g. [DOI] [PubMed] [Google Scholar]
  25. Sauro M. D., Thomas B. Tyrphostin attenuates platelet-derived growth factor-induced contraction in aortic smooth muscle through inhibition of protein tyrosine kinase(s). J Pharmacol Exp Ther. 1993 Dec;267(3):1119–1125. [PubMed] [Google Scholar]
  26. Seifert R. A., Hart C. E., Phillips P. E., Forstrom J. W., Ross R., Murray M. J., Bowen-Pope D. F. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J Biol Chem. 1989 May 25;264(15):8771–8778. [PubMed] [Google Scholar]
  27. Somlyo A. P., Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 1989 Sep;3(11):2266–2276. doi: 10.1096/fasebj.3.11.2506092. [DOI] [PubMed] [Google Scholar]
  28. Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
  29. Tsien R. Y. Fluorescent probes of cell signaling. Annu Rev Neurosci. 1989;12:227–253. doi: 10.1146/annurev.ne.12.030189.001303. [DOI] [PubMed] [Google Scholar]
  30. Wijetunge S., Aalkjaer C., Schachter M., Hughes A. D. Tyrosine kinase inhibitors block calcium channel currents in vascular smooth muscle cells. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1620–1623. doi: 10.1016/0006-291x(92)90262-j. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES