Abstract
1. [3H]-bradykinin was used to characterize the bradykinin receptors associated with canine cultured tracheal smooth muscle cells (TSMCs). Receptor binding assay showed that TSMCs had specific, saturable, high-affinity binding sites for [3H]-bradykinin. 2. The specific [3H]-bradykinin binding increased linearly with increasing cell concentrations. The equilibrium for association of [3H]-bradykinin with the bradykinin receptors was attained within 2 h at 4 degrees C and 1 h at room temperature, respectively. 3. Analysis of binding isotherms yielded an apparent equilibrium dissociation constant (KD) of 2.5 +/- 0.3 nM and a maximum receptor density (Bmax) of 25.1 +/- 0.3 fmol mg-1 protein. The Hill coefficient for [3H]-bradykinin binding was 1.00 +/- 0.02. The association (K1) and dissociation (K-1) rate constants were (8.67 +/- 2.60) x 10(6) M-1 min-1 and 0.024 +/- 0.005 min-1, respectively. KD, calculated from the ratio of K-1 and K1 was 2.8 +/- 0.5 nM, a value close to that of KD calculated from Scatchard plots of binding isotherms. 4. The B1 receptor selective agonist, (des-Arg9-bradykinin, 0.1 nM-10 microM) and antagonist ([Leu8, des-Arg9]-bradykinin, 0.1 nM-10 microM) did not did not inhibit the [3H]-bradykinin binding to TSMCs, which excludes the presence of B1 receptors in canine TSMCs.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banno Y., Sakai T., Kumada T., Nozawa Y. Potentiation by cholera toxin of bradykinin-induced inositol phosphate production in the osteoblast-like cell line MC3T3-E1. Biochem J. 1993 Jun 1;292(Pt 2):401–408. doi: 10.1042/bj2920401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes P. J. Modulation of neurotransmission in airways. Physiol Rev. 1992 Jul;72(3):699–729. doi: 10.1152/physrev.1992.72.3.699. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Christiansen S. C., Proud D., Cochrane C. G. Detection of tissue kallikrein in the bronchoalveolar lavage fluid of asthmatic subjects. J Clin Invest. 1987 Jan;79(1):188–197. doi: 10.1172/JCI112782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggerickx D., Raspe E., Bertrand D., Vassart G., Parmentier M. Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1306–1313. doi: 10.1016/0006-291x(92)90445-q. [DOI] [PubMed] [Google Scholar]
- Etscheid B. G., Ko P. H., Villereal M. L. Regulation of bradykinin receptor level by cholera toxin, pertussis toxin and forskolin in cultured human fibroblasts. Br J Pharmacol. 1991 Jun;103(2):1347–1350. doi: 10.1111/j.1476-5381.1991.tb09791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farmer S. G., Burch R. M., Kyle D. J., Martin J. A., Meeker S. N., Togo J. D-Arg[Hyp3-Thi5-D-Tic7-Tic8]-bradykinin, a potent antagonist of smooth muscle BK2 receptors and BK3 receptors. Br J Pharmacol. 1991 Apr;102(4):785–787. doi: 10.1111/j.1476-5381.1991.tb12251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farmer S. G., Burch R. M., Meeker S. A., Wilkins D. E. Evidence for a pulmonary B3 bradykinin receptor. Mol Pharmacol. 1989 Jul;36(1):1–8. [PubMed] [Google Scholar]
- Gown A. M., Vogel A. M., Gordon D., Lu P. L. A smooth muscle-specific monoclonal antibody recognizes smooth muscle actin isozymes. J Cell Biol. 1985 Mar;100(3):807–813. doi: 10.1083/jcb.100.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall J. M., Caulfield M. P., Watson S. P., Guard S. Receptor subtypes or species homologues: relevance to drug discovery. Trends Pharmacol Sci. 1993 Oct;14(10):376–383. doi: 10.1016/0165-6147(93)90096-3. [DOI] [PubMed] [Google Scholar]
- Hess J. F., Borkowski J. A., Macneil T., Stonesifer G. Y., Fraher J., Strader C. D., Ransom R. W. Differential pharmacology of cloned human and mouse B2 bradykinin receptors. Mol Pharmacol. 1994 Jan;45(1):1–8. [PubMed] [Google Scholar]
- Hock F. J., Wirth K., Albus U., Linz W., Gerhards H. J., Wiemer G., Henke S., Breipohl G., König W., Knolle J. Hoe 140 a new potent and long acting bradykinin-antagonist: in vitro studies. Br J Pharmacol. 1991 Mar;102(3):769–773. doi: 10.1111/j.1476-5381.1991.tb12248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liebmann C., Schnittler M., Stewart J. M., Reissmann S. Antagonist binding reveals two heterogenous B2 bradykinin receptors in rat myometrial membranes. Eur J Pharmacol. 1991 Jul 9;199(3):363–365. doi: 10.1016/0014-2999(91)90501-g. [DOI] [PubMed] [Google Scholar]
- Manning D. C., Vavrek R., Stewart J. M., Snyder S. H. Two bradykinin binding sites with picomolar affinities. J Pharmacol Exp Ther. 1986 May;237(2):504–512. [PubMed] [Google Scholar]
- Marsh K. A., Hill S. J. Bradykinin B2 receptor-mediated phosphoinositide hydrolysis in bovine cultured tracheal smooth muscle cells. Br J Pharmacol. 1992 Oct;107(2):443–447. doi: 10.1111/j.1476-5381.1992.tb12765.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh K. A., Hill S. J. Characteristics of the bradykinin-induced changes in intracellular calcium ion concentration of single bovine tracheal smooth muscle cells. Br J Pharmacol. 1993 Sep;110(1):29–35. doi: 10.1111/j.1476-5381.1993.tb13767.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olashaw N. E., Pledger W. J. Epidermal growth factor stimulates formation of inositol phosphates in BALB/c/3T3 cells pretreated with cholera toxin and isobutylmethylxanthine. J Biol Chem. 1988 Jan 25;263(3):1111–1114. [PubMed] [Google Scholar]
- Plevin R., Owen P. J. Multiple B2 kinin receptors in mammalian tissues. Trends Pharmacol Sci. 1988 Nov;9(11):387–389. doi: 10.1016/0165-6147(88)90059-4. [DOI] [PubMed] [Google Scholar]
- Proud D., Kaplan A. P. Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 1988;6:49–83. doi: 10.1146/annurev.iy.06.040188.000405. [DOI] [PubMed] [Google Scholar]
- Regoli D., Rhaleb N. E., Dion S., Drapeau G. New selective bradykinin receptor antagonists and bradykinin B2 receptor characterization. Trends Pharmacol Sci. 1990 Apr;11(4):156–161. doi: 10.1016/0165-6147(90)90067-I. [DOI] [PubMed] [Google Scholar]
- Stewart J. M., Vavrek R. J. Kinin antagonists: design and activities. J Cardiovasc Pharmacol. 1990;15 (Suppl 6):S69–S74. [PubMed] [Google Scholar]
- Trifilieff A., Haddad E. B., Landry Y., Gies J. P. Evidence for two high-affinity bradykinin binding sites in the guinea-pig lung. Eur J Pharmacol. 1991 Jun 19;207(2):129–134. doi: 10.1016/0922-4106(91)90087-x. [DOI] [PubMed] [Google Scholar]
- Trifilieff A., Lach E., Dumont P., Gies J. P. Bradykinin binding sites in healthy and carcinomatous human lung. Br J Pharmacol. 1994 Apr;111(4):1228–1232. doi: 10.1111/j.1476-5381.1994.tb14876.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang C. M., Chou S. P., Sung T. C., Chien H. J. Regulation of functional muscarinic receptor expression in tracheal smooth muscle cells. Am J Physiol. 1991 Dec;261(6 Pt 1):C1123–C1129. doi: 10.1152/ajpcell.1991.261.6.C1123. [DOI] [PubMed] [Google Scholar]
- Yang C. M., Hsia H. C., Chou S. P., Ong R., Hsieh J. T., Luo S. F. Bradykinin-stimulated phosphoinositide metabolism in cultured canine tracheal smooth muscle cells. Br J Pharmacol. 1994 Jan;111(1):21–28. doi: 10.1111/j.1476-5381.1994.tb14018.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang C. M., Hsia H. C., Luo S. F., Hsieh J. T., Ong R. The effect of cyclic AMP elevating agents on bradykinin- and carbachol-induced signal transduction in canine cultured tracheal smooth muscle cells. Br J Pharmacol. 1994 Jul;112(3):781–788. doi: 10.1111/j.1476-5381.1994.tb13147.x. [DOI] [PMC free article] [PubMed] [Google Scholar]