Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jan;114(1):238–244. doi: 10.1111/j.1476-5381.1995.tb14931.x

Inhibition of calcium release from the sarcoplasmic reticulum of rabbit aorta by hydralazine.

A M Gurney 1, M Allam 1
PMCID: PMC1510175  PMID: 7712024

Abstract

1. The mechanism of hydralazine-induced vasorelaxation was investigated in rabbit isolated aorta, by determining its ability to interfere with force development under a variety of conditions. 2. Hydralazine relaxed phenylephrine-contracted aorta with half maximal relaxation at 17 microM and maximal relaxation above 100 microM. At 200 microM, hydralazine had little effect on contractions induced by 25 mM or 50 mM K+. 3. Hydralazine was equally effective at inhibiting contractile responses to phenylephrine in the absence or presence of extracellular Ca2+. Responses to phenylephrine in Ca(2+)-free solution were blocked to the same degree whether hydralazine was applied during filling of the sarcoplasmic reticulum (SR) Ca2+ stores or after filling was complete. Caffeine-induced contractions were less sensitive to block by hydralazine. 4. Thapsigargin, cyclopiazonic acid, ryanodine, nifedipine and diltiazem all failed to block the inhibitory effect of hydralazine on tonic contractions to phenylephrine in the presence of extracellular Ca2+. However, when cyclopiazonic acid was applied either with diltiazem or ryanodine, substantial inhibition of the hydralazine response was observed. 5. We propose that tonic contractions to phenylephrine are largely maintained by Ca2+ cycling through the SR, with Ca2+ entering the smooth muscle cell being sequestered by the SR eventually to leak out through IP3-activated channels close to the contractile proteins. Sequestration of Ca2+ would employ two pathways, one sensitive to inhibitors of the SR Ca(2+)-ATPase and the other to Ca antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
238

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barron K., Carrier O., Haegele K. D., McLean A. J., McNay J. L., Du Souich P. Comparative evaluation of the in vitro effects of hydralazine and hydralazine acetonide on arterial smooth muscle. Br J Pharmacol. 1977 Nov;61(3):345–349. doi: 10.1111/j.1476-5381.1977.tb08426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  3. Bourreau J. P., Abela A. P., Kwan C. Y., Daniel E. E. Acetylcholine Ca2+ stores refilling directly involves a dihydropyridine-sensitive channel in dog trachea. Am J Physiol. 1991 Sep;261(3 Pt 1):C497–C505. doi: 10.1152/ajpcell.1991.261.3.C497. [DOI] [PubMed] [Google Scholar]
  4. Coburn R. F., Baron C., Papadopoulos M. T. Phosphoinositide metabolism and metabolism-contraction coupling in rabbit aorta. Am J Physiol. 1988 Dec;255(6 Pt 2):H1476–H1483. doi: 10.1152/ajpheart.1988.255.6.H1476. [DOI] [PubMed] [Google Scholar]
  5. Cook N. S., Weir S. W., Danzeisen M. C. Anti-vasoconstrictor effects of the K+ channel opener cromakalim on the rabbit aorta--comparison with the calcium antagonist isradipine. Br J Pharmacol. 1988 Nov;95(3):741–752. doi: 10.1111/j.1476-5381.1988.tb11700.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeFeo T. T., Morgan K. G. Calcium-force coupling mechanisms during vasodilator-induced relaxation of ferret aorta. J Physiol. 1989 May;412:123–133. doi: 10.1113/jphysiol.1989.sp017607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond J., Janis R. A. Effects of hydralazine and verapamil on phosphorylase activity and guanosine cyclic 3',5'-monophosphate levels in guinea-pig taenia coli. Br J Pharmacol. 1980 Feb;68(2):275–282. doi: 10.1111/j.1476-5381.1980.tb10416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diamond J., Janis R. A. Increases in cyclic GMP levels may not mediate relaxant effects of sodium nitroprusside, verapamil and hydralazine in rat vas deferens. Nature. 1978 Feb 2;271(5644):472–473. doi: 10.1038/271472a0. [DOI] [PubMed] [Google Scholar]
  9. Ebeigbe A. B., Aloamaka C. P. Mechanism of hydralazine-induced relaxation of arterial smooth muscle. Cardiovasc Res. 1985 Jul;19(7):400–405. doi: 10.1093/cvr/19.7.400. [DOI] [PubMed] [Google Scholar]
  10. Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 1988 Dec 8;336(6199):583–586. doi: 10.1038/336583a0. [DOI] [PubMed] [Google Scholar]
  11. Gurney A. M. Mechanisms of drug-induced vasodilation. J Pharm Pharmacol. 1994 Apr;46(4):242–251. doi: 10.1111/j.2042-7158.1994.tb03789.x. [DOI] [PubMed] [Google Scholar]
  12. Hermsmeyer K., Trapani A., Abel P. W., Worcel M. Effect of hydralazine on tension and membrane potential in the rat caudal artery. J Pharmacol Exp Ther. 1983 Nov;227(2):322–326. [PubMed] [Google Scholar]
  13. Herrmann-Frank A., Darling E., Meissner G. Functional characterization of the Ca(2+)-gated Ca2+ release channel of vascular smooth muscle sarcoplasmic reticulum. Pflugers Arch. 1991 May;418(4):353–359. doi: 10.1007/BF00550873. [DOI] [PubMed] [Google Scholar]
  14. Higashio T., Kuroda K. Effects of cadralazine on contractions induced by Ca2+ and norepinephrine in isolated rabbit aortic strips. Arzneimittelforschung. 1988 Mar;38(3):346–349. [PubMed] [Google Scholar]
  15. Higashio T., Kuroda K. Effects of cadralazine on contractions induced by norepinephrine, serotonin, angiotensin II and K+ in rabbit aortic and renal arterial strips. Arzneimittelforschung. 1988 Mar;38(3):341–346. [PubMed] [Google Scholar]
  16. Hwang K. S., van Breemen C. Ryanodine modulation of 45Ca efflux and tension in rabbit aortic smooth muscle. Pflugers Arch. 1987 Apr;408(4):343–350. doi: 10.1007/BF00581127. [DOI] [PubMed] [Google Scholar]
  17. KIRPEKAR S. M., LEWIS J. J. Pharmacological properties of hydrallazine, dihydrallazine and some related compounds. J Pharm Pharmacol. 1957 Dec;9(12):877–888. doi: 10.1111/j.2042-7158.1957.tb12349.x. [DOI] [PubMed] [Google Scholar]
  18. Kajikuri J., Kuriyama H. Inhibitory action of alpha-human atrial natriuretic peptide on noradrenaline-induced synthesis of myo-inositol 1,4,5-trisphosphate in the smooth muscle cells of rabbit aorta. Br J Pharmacol. 1990 Mar;99(3):536–540. doi: 10.1111/j.1476-5381.1990.tb12964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Khalil R. A., Lajoie C., Resnick M. S., Morgan K. G. Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am J Physiol. 1992 Sep;263(3 Pt 1):C714–C719. doi: 10.1152/ajpcell.1992.263.3.C714. [DOI] [PubMed] [Google Scholar]
  20. Khayyal M., Gross F., Kreye V. A. Studies on the direct vasodilator effect of hydralazine in the isolated rabbit renal artery. J Pharmacol Exp Ther. 1981 Feb;216(2):390–394. [PubMed] [Google Scholar]
  21. Kreye V. A. Direct vasodilators with unknown modes of action: the nitro-compounds and hydralazine. J Cardiovasc Pharmacol. 1984;6 (Suppl 4):S646–S655. doi: 10.1097/00005344-198406004-00011. [DOI] [PubMed] [Google Scholar]
  22. Kreye V. A., Rüegg J. C., Hofmann F. Effect of calcium-antagonist and calmodulin-antagonist drugs on calmodulin-dependent contractions of chemically skinned vascular smooth muscle from rabbit renal arteries. Naunyn Schmiedebergs Arch Pharmacol. 1983 Jun;323(2):85–89. doi: 10.1007/BF00634253. [DOI] [PubMed] [Google Scholar]
  23. Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lipe S., Moulds R. F. In vitro differences between human arteries and veins in their responses to hydralazine. J Pharmacol Exp Ther. 1981 Apr;217(1):204–208. [PubMed] [Google Scholar]
  25. Lodge N. J., van Breemen C. Mobilization of extracellularly bound Ca2+ during high K+ and norepinephrine stimulation of the rabbit aorta. Blood Vessels. 1985;22(5):234–243. doi: 10.1159/000158607. [DOI] [PubMed] [Google Scholar]
  26. Low A. M., Kwan C. Y., Daniel E. E. Evidence for two types of internal Ca2+ stores in canine mesenteric artery with different refilling mechanisms. Am J Physiol. 1992 Jan;262(1 Pt 2):H31–H37. doi: 10.1152/ajpheart.1992.262.1.H31. [DOI] [PubMed] [Google Scholar]
  27. Luo D. L., Nakazawa M., Ishibashi T., Kato K., Imai S. Putative, selective inhibitors of sarcoplasmic reticulum Ca+(+)-pump ATPase inhibit relaxation by nitroglycerin and atrial natriuretic factor of the rabbit aorta contracted by phenylephrine. J Pharmacol Exp Ther. 1993 Jun;265(3):1187–1192. [PubMed] [Google Scholar]
  28. Matsuyama S., Shuntoh H., Katayama S., Tanaka C. Thapsigargin induces an endothelium-dependent, intracellular calcium ion-dependent vasodilation in vitro. Life Sci. 1993;53(9):681–688. doi: 10.1016/0024-3205(93)90244-w. [DOI] [PubMed] [Google Scholar]
  29. McLean A. J., Barron K., du Souich P., Haegele K. D., McNay J. L., Carrier O., Briggs A. Interaction of hydralazine and hydrazone derivatives with contractile mechanisms in rabbit aortic smooth muscle. J Pharmacol Exp Ther. 1978 May;205(2):418–425. [PubMed] [Google Scholar]
  30. McLean A. J., du Souich P., Barron K. W., Briggs A. H. Interaction of hydralazine with tension development and mechanisms of calcium accumulation in K+-stimulated rabbit aortic strips. J Pharmacol Exp Ther. 1978 Oct;207(1):40–48. [PubMed] [Google Scholar]
  31. Missiaen L., De Smedt H., Droogmans G., Declerck I., Plessers L., Casteels R. Uptake characteristics of the InsP3-sensitive and -insensitive Ca2+ pools in porcine aortic smooth-muscle cells: different Ca2+ sensitivity of the Ca2(+)-uptake mechanism. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1183–1188. doi: 10.1016/0006-291x(91)91546-o. [DOI] [PubMed] [Google Scholar]
  32. Orallo F., Gil-Longo J., Bardán B., Calleja J. M. Comparison of the effects of hydralazine and nifedipine on contractions and 45Ca influx of rat aorta. J Pharm Pharmacol. 1991 May;43(5):356–359. doi: 10.1111/j.2042-7158.1991.tb06704.x. [DOI] [PubMed] [Google Scholar]
  33. Seidler N. W., Jona I., Vegh M., Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Oct 25;264(30):17816–17823. [PubMed] [Google Scholar]
  34. Thastrup O. Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2(+)-ATPase inhibitor, thapsigargin. Agents Actions. 1990 Jan;29(1-2):8–15. doi: 10.1007/BF01964706. [DOI] [PubMed] [Google Scholar]
  35. Thirstrup S., Nielsen-Kudsk J. E. Effects of K+ channel blockers on the relaxant action of dihydralazine, cromakalim and nitroprusside in isolated rabbit femoral arteries. Eur J Pharmacol. 1992 May 14;215(2-3):177–183. doi: 10.1016/0014-2999(92)90026-z. [DOI] [PubMed] [Google Scholar]
  36. Van Breemen C. Calcium requirement for activation of intact aortic smooth muscle. J Physiol. 1977 Nov;272(2):317–329. doi: 10.1113/jphysiol.1977.sp012046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Worcel M. Relationship between the direct inhibitory effect of hydralazine and propildazine on arterial smooth muscle contractility and sympathetic innervation. J Pharmacol Exp Ther. 1978 Nov;207(2):320–330. [PubMed] [Google Scholar]
  38. Yen M. H., Wu C. C., Chiou W. F., Liao C. H. Effects of hydralazine on guanosine cyclic 3', 5'-monophosphate levels in rat aorta. Proc Natl Sci Counc Repub China B. 1989 Apr;13(2):83–88. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES