Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jan;114(2):433–441. doi: 10.1111/j.1476-5381.1995.tb13245.x

Necessity of protein kinase C activity for maintenance of acetylcholine receptor function at snake twitch fibre endplates.

J C Hardwick 1, R L Parsons 1
PMCID: PMC1510267  PMID: 7533618

Abstract

1. The extent of recovery of endplate sensitivity following a 5 or 10 min exposure to carbachol was determined from measurements of miniature endplate current (m.e.p.c.) amplitudes in voltage-clamped snake twitch fibre endplates. M.e.p.c. amplitude recovery was dependent on the carbachol concentration (0.27-5.4 mM) and duration of application. Staurosporine pretreatment (0.5 microM for approximately 15 min) further decreased the extent of m.e.p.c. amplitude recovery. 2. The decrease in m.e.p.c. amplitude at control endplates exposed to high concentrations of agonist (5.4 mM carbachol for 10 min) was due to an apparent decrease in postsynaptic receptor density, not to a change in the conductance of the acetylcholine (ACh)-activated channels. 3. Pretreatment with either 1 microM lavendustin A or 50 microM KN-62 had no effect on m.e.p.c. amplitude recovery, whereas pretreatment with either 0.5 microM staurosporine, 50 microM sphingosine, or 0.5 microM calphostin C significantly reduced m.e.p.c. amplitude recovery following carbachol exposure. 4. Sphingosine and staurosporine produced a concentration-dependent decrease in the extent of m.e.p.c. amplitude recovery, but had no effect on m.e.p.c. characteristics in the absence of carbachol. In addition, this decrease in m.e.p.c. amplitude was not due to the presence of a subpopulation of small amplitude m.e.p.cs. 5. Prolonged treatment (18-20 h) of muscles with 200 nM phorbol 12-myristate 13-acetate (PMA), to down regulate protein kinase C, resulted in a significant reduction in m.e.p.c. amplitudes following exposure to carbachol. Conversely, treatment with 200 nM 4 alpha PMA, an inactive analogue, had no effect on m.e.p.c. amplitude recovery.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
433

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bencherif M., Lukas R. J. Cytochalasin modulation of nicotinic cholinergic receptor expression and muscarinic receptor function in human TE671/RD cells: a possible functional role of the cytoskeleton. J Neurochem. 1993 Sep;61(3):852–864. doi: 10.1111/j.1471-4159.1993.tb03596.x. [DOI] [PubMed] [Google Scholar]
  2. Connor E. A., Fiekers J. F., Neel D. S., Parsons R. L., Schnitzler R. M. Comparison of cholinergic activation and desensitization at snake twitch and slow muscle fibre end-plates. J Physiol. 1984 Jun;351:657–674. doi: 10.1113/jphysiol.1984.sp015269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dilger J. P., Brett R. S. Direct measurement of the concentration- and time-dependent open probability of the nicotinic acetylcholine receptor channel. Biophys J. 1990 Apr;57(4):723–731. doi: 10.1016/S0006-3495(90)82593-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dilger J. P., Liu Y. Desensitization of acetylcholine receptors in BC3H-1 cells. Pflugers Arch. 1992 Apr;420(5-6):479–485. doi: 10.1007/BF00374622. [DOI] [PubMed] [Google Scholar]
  5. Dionne V. E., Parsons R. L. Characteristics of the acetylcholine-operated channel at twitch and slow fibre neuromuscular junctions of the garter snake. J Physiol. 1981 Jan;310:145–158. doi: 10.1113/jphysiol.1981.sp013541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dionne V. E. Two types of nicotinic acetylcholine receptor channels at slow fibre end-plates of the garter snake. J Physiol. 1989 Feb;409:313–331. doi: 10.1113/jphysiol.1989.sp017499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feltz A., Jaoul A. Direct estimates of chloride activity in muscle fibres depolarized by carbachol. Br J Pharmacol. 1974 Jun;51(2):304–306. doi: 10.1111/j.1476-5381.1974.tb09661.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feltz A., Trautmann A. Desensitization at the frog neuromuscular junction: a biphasic process. J Physiol. 1982 Jan;322:257–272. doi: 10.1113/jphysiol.1982.sp014036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hall Z. W., Sanes J. R. Synaptic structure and development: the neuromuscular junction. Cell. 1993 Jan;72 (Suppl):99–121. doi: 10.1016/s0092-8674(05)80031-5. [DOI] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hannun Y. A., Loomis C. R., Merrill A. H., Jr, Bell R. M. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem. 1986 Sep 25;261(27):12604–12609. [PubMed] [Google Scholar]
  12. Hardwick J. C., Coniglio L. M., Parsons R. L. Staurosporine inhibits the extent of acetylcholine receptor recovery from carbachol-induced desensitization in snake twitch fibres. Br J Pharmacol. 1991 Dec;104(4):879–886. doi: 10.1111/j.1476-5381.1991.tb12521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hardwick J. C., Parsons R. L. Mechanism of staurosporine-induced decrease in acetylcholine receptor recovery from desensitization. Br J Pharmacol. 1993 Mar;108(3):741–748. doi: 10.1111/j.1476-5381.1993.tb12871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hardwick J. C., Parsons R. L. Necessity of divalent cations for recovery from carbachol-induced nicotinic acetylcholine receptor inactivation at snake twitch fibre endplates. Br J Pharmacol. 1993 Oct;110(2):889–895. doi: 10.1111/j.1476-5381.1993.tb13896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hardwick J. C., Parsons R. L. Requirement of a colchicine-sensitive component of the cytoskeleton for acetylcholine receptor recovery. Br J Pharmacol. 1995 Jan;114(2):442–446. doi: 10.1111/j.1476-5381.1995.tb13246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jefferson A. B., Schulman H. Sphingosine inhibits calmodulin-dependent enzymes. J Biol Chem. 1988 Oct 25;263(30):15241–15244. [PubMed] [Google Scholar]
  17. Jenkinson D. H., Terrar D. A. Influence of chloride ions on changes in membrane potential during prolonged application of carbachol to frog skeletal muscle. Br J Pharmacol. 1973 Feb;47(2):363–376. doi: 10.1111/j.1476-5381.1973.tb08334.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kobayashi E., Nakano H., Morimoto M., Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1989 Mar 15;159(2):548–553. doi: 10.1016/0006-291x(89)90028-4. [DOI] [PubMed] [Google Scholar]
  20. Lo C. F., Breitwieser G. E. Protein kinase-independent inhibition of muscarinic K+ channels by staurosporine. Am J Physiol. 1994 Apr;266(4 Pt 1):C1128–C1132. doi: 10.1152/ajpcell.1994.266.4.C1128. [DOI] [PubMed] [Google Scholar]
  21. Nakano H., Kobayashi E., Takahashi I., Tamaoki T., Kuzuu Y., Iba H. Staurosporine inhibits tyrosine-specific protein kinase activity of Rous sarcoma virus transforming protein p60. J Antibiot (Tokyo) 1987 May;40(5):706–708. doi: 10.7164/antibiotics.40.706. [DOI] [PubMed] [Google Scholar]
  22. Naranjo D., Brehm P. Modal shifts in acetylcholine receptor channel gating confer subunit-dependent desensitization. Science. 1993 Jun 18;260(5115):1811–1814. doi: 10.1126/science.8511590. [DOI] [PubMed] [Google Scholar]
  23. Nastuk W. L., Parsons R. L. Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle. J Gen Physiol. 1970 Aug;56(2):218–249. doi: 10.1085/jgp.56.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Onoda T., Iinuma H., Sasaki Y., Hamada M., Isshiki K., Naganawa H., Takeuchi T., Tatsuta K., Umezawa K. Isolation of a novel tyrosine kinase inhibitor, lavendustin A, from Streptomyces griseolavendus. J Nat Prod. 1989 Nov-Dec;52(6):1252–1257. doi: 10.1021/np50066a009. [DOI] [PubMed] [Google Scholar]
  25. Rodriguez-Pena A., Rozengurt E. Disappearance of Ca2+-sensitive, phospholipid-dependent protein kinase activity in phorbol ester-treated 3T3 cells. Biochem Biophys Res Commun. 1984 May 16;120(3):1053–1059. doi: 10.1016/s0006-291x(84)80213-2. [DOI] [PubMed] [Google Scholar]
  26. Ruff R. L., Spiegel P. Ca sensitivity and acetylcholine receptor currents of twitch and tonic snake muscle fibers. Am J Physiol. 1990 Dec;259(6 Pt 1):C911–C919. doi: 10.1152/ajpcell.1990.259.6.C911. [DOI] [PubMed] [Google Scholar]
  27. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  28. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  29. Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed] [Google Scholar]
  30. Wagner K. R., Cohen J. B., Huganir R. L. The 87K postsynaptic membrane protein from Torpedo is a protein-tyrosine kinase substrate homologous to dystrophin. Neuron. 1993 Mar;10(3):511–522. doi: 10.1016/0896-6273(93)90338-r. [DOI] [PubMed] [Google Scholar]
  31. Yanagihara N., Tachikawa E., Izumi F., Yasugawa S., Yamamoto H., Miyamoto E. Staurosporine: an effective inhibitor for Ca2+/calmodulin-dependent protein kinase II. J Neurochem. 1991 Jan;56(1):294–298. doi: 10.1111/j.1471-4159.1991.tb02595.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES