Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Apr;114(7):1335–1342. doi: 10.1111/j.1476-5381.1995.tb13353.x

Co-induction of nitric oxide synthase and cyclo-oxygenase: interactions between nitric oxide and prostanoids.

T A Swierkosz 1, J A Mitchell 1, T D Warner 1, R M Botting 1, J R Vane 1
PMCID: PMC1510271  PMID: 7541688

Abstract

1. Lipopolysaccharide (LPS) co-induces nitric oxide synthase (iNOS) and cyclo-oxygenase (COX-2) in J774.2 macrophages. Here we have used LPS-activated J774.2 macrophages to investigate the effects of exogenous or endogenous nitric oxide (NO) on COX-2 in both intact and broken cell preparations. NOS activity was assessed by measuring the accumulation of nitrite using the Griess reaction. COX-2 activity was assessed by measuring the formation of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) by radioimmunoassay. Western blot analysis was used to determine the expression of COX-2 protein. We have also investigated whether endogenous NO regulates the activity and/or expression of COX in vivo by measuring NOS and COX activity in the lung and kidney, as well as release of prostanoids from the perfused lung of normal and LPS-treated rats. 2. Incubation of cultured murine macrophages (J774.2 cells) with LPS (1 microgram ml-1) for 24 h caused a time-dependent accumulation of nitrite and 6-keto-PGF1 alpha in the cell culture medium which was first significant after 6 h. The formation of both 6-keto-PGF1 alpha and nitrite elicited by LPS was inhibited by cycloheximide (1 microM) or dexamethasone (1 microM). Western blot analysis showed that J774.2 macrophages contained COX-2 protein after LPS administration, whereas untreated cells contained no COX-2. 3. The accumulation of 6-keto-PGF1 alpha in the medium of LPS-activated J774.2 macrophages was concentration-dependently inhibited by chronic (24 h) exposure to sodium nitroprusside (SNP; 1-1000 microM).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1335

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett A., Melhuish P. B., Stamford I. F. Nitrates do not affect prostacyclin formation by rat arteries: this is unrelated to increased vascular prostacyclin formation with age. J Pharm Pharmacol. 1987 Dec;39(12):1039–1041. doi: 10.1111/j.2042-7158.1987.tb03158.x. [DOI] [PubMed] [Google Scholar]
  3. Brotherton A. F. Induction of prostacyclin biosynthesis is closely associated with increased guanosine 3',5'-cyclic monophosphate accumulation in cultured human endothelium. J Clin Invest. 1986 Nov;78(5):1253–1260. doi: 10.1172/JCI112709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corbett J. A., Kwon G., Turk J., McDaniel M. L. IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry. 1993 Dec 21;32(50):13767–13770. doi: 10.1021/bi00213a002. [DOI] [PubMed] [Google Scholar]
  5. De Caterina R., Dorso C. R., Tack-Goldman K., Weksler B. B. Nitrates and endothelial prostacyclin production: studies in vitro. Circulation. 1985 Jan;71(1):176–182. doi: 10.1161/01.cir.71.1.176. [DOI] [PubMed] [Google Scholar]
  6. Doni M. G., Whittle B. J., Palmer R. M., Moncada S. Actions of nitric oxide on the release of prostacyclin from bovine endothelial cells in culture. Eur J Pharmacol. 1988 Jun 22;151(1):19–25. doi: 10.1016/0014-2999(88)90687-5. [DOI] [PubMed] [Google Scholar]
  7. Fitzgerald D. J., Roy L., Robertson R. M., FitzGerald G. A. The effects of organic nitrates on prostacyclin biosynthesis and platelet function in humans. Circulation. 1984 Aug;70(2):297–302. doi: 10.1161/01.cir.70.2.297. [DOI] [PubMed] [Google Scholar]
  8. Franchi A. M., Chaud M., Rettori V., Suburo A., McCann S. M., Gimeno M. Role of nitric oxide in eicosanoid synthesis and uterine motility in estrogen-treated rat uteri. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):539–543. doi: 10.1073/pnas.91.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Förstermann U., Schmidt H. H., Pollock J. S., Sheng H., Mitchell J. A., Warner T. D., Nakane M., Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol. 1991 Oct 24;42(10):1849–1857. doi: 10.1016/0006-2952(91)90581-o. [DOI] [PubMed] [Google Scholar]
  10. Gross S. S., Jaffe E. A., Levi R., Kilbourn R. G. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun. 1991 Aug 15;178(3):823–829. doi: 10.1016/0006-291x(91)90965-a. [DOI] [PubMed] [Google Scholar]
  11. Heinzel B., John M., Klatt P., Böhme E., Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281(Pt 3):627–630. doi: 10.1042/bj2810627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hemler M., Lands W. E. Purification of the cyclooxygenase that forms prostaglandins. Demonstration of two forms of iron in the holoenzyme. J Biol Chem. 1976 Sep 25;251(18):5575–5579. [PubMed] [Google Scholar]
  13. Inoue T., Fukuo K., Morimoto S., Koh E., Ogihara T. Nitric oxide mediates interleukin-1-induced prostaglandin E2 production by vascular smooth muscle cells. Biochem Biophys Res Commun. 1993 Jul 15;194(1):420–424. doi: 10.1006/bbrc.1993.1836. [DOI] [PubMed] [Google Scholar]
  14. Janssens S. P., Shimouchi A., Quertermous T., Bloch D. B., Bloch K. D. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem. 1992 Jul 25;267(21):14519–14522. [PubMed] [Google Scholar]
  15. Julou-Schaeffer G., Gray G. A., Fleming I., Schott C., Parratt J. R., Stoclet J. C. Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol. 1990 Oct;259(4 Pt 2):H1038–H1043. doi: 10.1152/ajpheart.1990.259.4.H1038. [DOI] [PubMed] [Google Scholar]
  16. Kanner J., Harel S., Granit R. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids. 1992 Jan;27(1):46–49. doi: 10.1007/BF02537058. [DOI] [PubMed] [Google Scholar]
  17. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lands W. E. Interactions of lipid hydroperoxides with eicosanoid biosynthesis. J Free Radic Biol Med. 1985;1(2):97–101. doi: 10.1016/0748-5514(85)90012-1. [DOI] [PubMed] [Google Scholar]
  19. Levin R. I., Jaffe E. A., Weksler B. B., Tack-Goldman K. Nitroglycerin stimulates synthesis of prostacyclin by cultured human endothelial cells. J Clin Invest. 1981 Mar;67(3):762–769. doi: 10.1172/JCI110093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levin R. I., Weksler B. B., Jaffe E. A. The interaction of sodium nitroprusside with human endothelial cells and platelets: nitroprusside and prostacyclin synergistically inhibit platelet function. Circulation. 1982 Dec;66(6):1299–1307. doi: 10.1161/01.cir.66.6.1299. [DOI] [PubMed] [Google Scholar]
  21. Lowenstein C. J., Glatt C. S., Bredt D. S., Snyder S. H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6711–6715. doi: 10.1073/pnas.89.15.6711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marotta P., Sautebin L., Di Rosa M. Modulation of the induction of nitric oxide synthase by eicosanoids in the murine macrophage cell line J774. Br J Pharmacol. 1992 Nov;107(3):640–641. doi: 10.1111/j.1476-5381.1992.tb14499.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mehta J., Mehta P., Ostrowski N. Effects of nitroglycerin on human vascular prostacyclin and thromboxane A2 generation. J Lab Clin Med. 1983 Jul;102(1):116–125. [PubMed] [Google Scholar]
  24. Mehta J., Mehta P., Roberts A., Faro R., Ostrowski N., Brigmon L. Comparative effects of nitroglycerin and nitroprusside on prostacyclin generation in adult human vessel wall. J Am Coll Cardiol. 1983 Oct;2(4):625–630. doi: 10.1016/s0735-1097(83)80301-5. [DOI] [PubMed] [Google Scholar]
  25. Mitchell J. A., Akarasereenont P., Thiemermann C., Flower R. J., Vane J. R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11693–11697. doi: 10.1073/pnas.90.24.11693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mitchell J. A., Hecker M., Anggård E. E., Vane J. R. Cultured endothelial cells maintain their L-arginine level despite the continuous release of EDRF. Eur J Pharmacol. 1990 Jul 17;182(3):573–576. doi: 10.1016/0014-2999(90)90058-e. [DOI] [PubMed] [Google Scholar]
  27. Mitchell J. A., Sheng H., Förstermann U., Murad F. Characterization of nitric oxide synthases in non-adrenergic non-cholinergic nerve containing tissue from the rat anococcygeus muscle. Br J Pharmacol. 1991 Oct;104(2):289–291. doi: 10.1111/j.1476-5381.1991.tb12422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mitchell J. A., de Nucci G., Warner T. D., Vane J. R. Alkaline buffers release EDRF from bovine cultured aortic endothelial cells. Br J Pharmacol. 1991 Jun;103(2):1295–1302. doi: 10.1111/j.1476-5381.1991.tb09783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mitchell J. A., de Nucci G., Warner T. D., Vane J. R. Different patterns of release of endothelium-derived relaxing factor and prostacyclin. Br J Pharmacol. 1992 Feb;105(2):485–489. doi: 10.1111/j.1476-5381.1992.tb14280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nakabayashi S., Uyama O., Nagatsuka K., Uehara A., Wanaka A., Yoneda S., Kimura K., Kamata T. The effect of isosorbide dinitrate and isosorbide-5-mononitrate on prostacyclin (PGI2) and thromboxane A2 (TXA2) generation in rat and human arteries. Res Commun Chem Pathol Pharmacol. 1985 Mar;47(3):323–332. [PubMed] [Google Scholar]
  31. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  32. Nishida K., Harrison D. G., Navas J. P., Fisher A. A., Dockery S. P., Uematsu M., Nerem R. M., Alexander R. W., Murphy T. J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992 Nov;90(5):2092–2096. doi: 10.1172/JCI116092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pollock J. S., Förstermann U., Mitchell J. A., Warner T. D., Schmidt H. H., Nakane M., Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10480–10484. doi: 10.1073/pnas.88.23.10480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rettori V., Belova N., Dees W. L., Nyberg C. L., Gimeno M., McCann S. M. Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10130–10134. doi: 10.1073/pnas.90.21.10130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Salvemini D., Seibert K., Masferrer J. L., Misko T. P., Currie M. G., Needleman P. Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest. 1994 May;93(5):1940–1947. doi: 10.1172/JCI117185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sautebin L., Di Rosa M. Nitric oxide modulates prostacyclin biosynthesis in the lung of endotoxin-treated rats. Eur J Pharmacol. 1994 Sep 1;262(1-2):193–196. doi: 10.1016/0014-2999(94)90047-7. [DOI] [PubMed] [Google Scholar]
  38. Schrör K., Ahland B., Weiss P., König E. Stimulation of coronary vascular PGI2 by organic nitrates. Eur Heart J. 1988 Jan;9 (Suppl A):25–32. doi: 10.1093/eurheartj/9.suppl_a.25. [DOI] [PubMed] [Google Scholar]
  39. Sessa W. C., Harrison J. K., Barber C. M., Zeng D., Durieux M. E., D'Angelo D. D., Lynch K. R., Peach M. J. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem. 1992 Aug 5;267(22):15274–15276. [PubMed] [Google Scholar]
  40. Shimokawa T., Kulmacz R. J., DeWitt D. L., Smith W. L. Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis. J Biol Chem. 1990 Nov 25;265(33):20073–20076. [PubMed] [Google Scholar]
  41. Stadler J., Harbrecht B. G., Di Silvio M., Curran R. D., Jordan M. L., Simmons R. L., Billiar T. R. Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol. 1993 Feb;53(2):165–172. doi: 10.1002/jlb.53.2.165. [DOI] [PubMed] [Google Scholar]
  42. Stadler J., Stefanovic-Racic M., Billiar T. R., Curran R. D., McIntyre L. A., Georgescu H. I., Simmons R. L., Evans C. H. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol. 1991 Dec 1;147(11):3915–3920. [PubMed] [Google Scholar]
  43. Stuehr D. J., Cho H. J., Kwon N. S., Weise M. F., Nathan C. F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773–7777. doi: 10.1073/pnas.88.17.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Szabó C., Mitchell J. A., Thiemermann C., Vane J. R. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol. 1993 Mar;108(3):786–792. doi: 10.1111/j.1476-5381.1993.tb12879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thiemermann C., Szabó C., Mitchell J. A., Vane J. R. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):267–271. doi: 10.1073/pnas.90.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thiemermann C. The role of the L-arginine: nitric oxide pathway in circulatory shock. Adv Pharmacol. 1994;28:45–79. doi: 10.1016/s1054-3589(08)60493-7. [DOI] [PubMed] [Google Scholar]
  47. Tsai A. L., Wei C., Kulmacz R. J. Interaction between nitric oxide and prostaglandin H synthase. Arch Biochem Biophys. 1994 Sep;313(2):367–372. doi: 10.1006/abbi.1994.1400. [DOI] [PubMed] [Google Scholar]
  48. Vane J. R., Botting R. M. The mode of action of anti-inflammatory drugs. Postgrad Med J. 1990;66 (Suppl 4):S2–17. [PubMed] [Google Scholar]
  49. Wright C. E., Rees D. D., Moncada S. Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res. 1992 Jan;26(1):48–57. doi: 10.1093/cvr/26.1.48. [DOI] [PubMed] [Google Scholar]
  50. de Nucci G., Gryglewski R. J., Warner T. D., Vane J. R. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2334–2338. doi: 10.1073/pnas.85.7.2334. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES