Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Mar;114(5):1017–1025. doi: 10.1111/j.1476-5381.1995.tb13307.x

The interaction of antidepressant drugs with central and peripheral (enteric) 5-HT3 and 5-HT4 receptors.

A Lucchelli 1, M G Santagostino-Barbone 1, A Barbieri 1, S M Candura 1, M Tonini 1
PMCID: PMC1510312  PMID: 7780635

Abstract

1. A combined study of receptor binding in central neuronal cell membranes and functional responses in isolated segments of guinea-pig small intestine allowed characterization of the interaction of four antidepressant drugs with central and peripheral 5-HT3 and 5-HT4 receptors. 2. Clomipramine, paroxetine and fluoxetine inhibited [3H]-DAU 6215 binding to 5-HT3 recognition sites in NG 108-15 cells with IC50 values in the range 1.3-4 microM. Litoxetine had an IC50 of 0.3 microM. The specific binding of [3H]-GR 113808 to 5-HT4 recognition sites in pig striatal membranes was inhibited by all four antidepressants with negligible potency (IC50 values > or = 20 microM). 3. In whole ileal segments, concentration-response curves to 5-HT were biphasic, with the high- and low-potency phases involving 5-HT4 and 5-HT3 receptors, respectively. Curves to 2-methyl-5-hydroxytryptamine (2-methyl-5-HT: a 5-HT3 receptor agonist) and 5-methoxytryptamine (5-MeOT: a 5-HT4 receptor agonist) were monophasic. All antidepressants were used at concentrations lacking anticholinoceptor properties, as demonstrated in both electrically stimulated longitudinal muscle-myenteric plexus preparations (LMMPs) and in unstimulated LMMPs following addition of acetylcholine (100 nM). 4. Fluoxetine (0.1-1 microM) and litoxetine (0.3-3 microM) antagonized both the high- and low-potency phases of the 5-HT curve. Schild analysis for the low-potency phase yielded pA2 estimates of 6.6 +/- 0.3 (Schild slope of 1.1) and of 6.6 +/- 0.1 (Schild slope of 1.1), respectively. At higher concentrations (3 microM), fluoxetine markedly inhibited the 5-HT response maximum. Clomipramine (10-300 nM) inhibited, by a mechanism independent of concentration, both phases of the 5-HT curve with a reduction of the maximum response. Paroxetine (1 microM) was ineffective on the high-potency phase, but caused a rightward shift of the low-potency phase (pKB: 6.1 +/- 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1017

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel I., Schoemaker H., Prouteau M., Garreau M., Langer S. Z. Litoxetine: a selective 5-HT uptake inhibitor with concomitant 5-HT3 receptor antagonist and antiemetic properties. Eur J Pharmacol. 1993 Mar 2;232(2-3):139–145. doi: 10.1016/0014-2999(93)90767-c. [DOI] [PubMed] [Google Scholar]
  2. Benfield P., Heel R. C., Lewis S. P. Fluoxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs. 1986 Dec;32(6):481–508. doi: 10.2165/00003495-198632060-00002. [DOI] [PubMed] [Google Scholar]
  3. Bond R. A., Ornstein A. G., Clarke D. E. Unsurmountable antagonism to 5-hydroxytryptamine in rat kidney results from pseudoirreversible inhibition rather than multiple receptors or allosteric receptor modulation. J Pharmacol Exp Ther. 1989 May;249(2):401–410. [PubMed] [Google Scholar]
  4. Bradbury B. J., Baumgold J., Jacobson K. A. Functionalized congener approach for the design of novel muscarinic agents. Synthesis and pharmacological evaluation of N-methyl-N-[4-(1-pyrrolidinyl)-2-butynyl] amides. J Med Chem. 1990 Feb;33(2):741–748. doi: 10.1021/jm00164a044. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Buchheit K. H., Engel G., Mutschler E., Richardson B. Study of the contractile effect of 5-hydroxytryptamine (5-HT) in the isolated longitudinal muscle strip from guinea-pig ileum. Evidence for two distinct release mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 1985 Mar;329(1):36–41. doi: 10.1007/BF00695189. [DOI] [PubMed] [Google Scholar]
  7. Buchheit K. H., Gamse R., Pfannkuche H. J. SDZ 205-557, a selective, surmountable antagonist for 5-HT4 receptors in the isolated guinea pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1992 Apr;345(4):387–393. doi: 10.1007/BF00176615. [DOI] [PubMed] [Google Scholar]
  8. Butler A., Elswood C. J., Burridge J., Ireland S. J., Bunce K. T., Kilpatrick G. J., Tyers M. B. The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues. Br J Pharmacol. 1990 Nov;101(3):591–598. doi: 10.1111/j.1476-5381.1990.tb14126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarke D. E., Craig D. A., Fozard J. R. The 5-HT4 receptor: naughty, but nice. Trends Pharmacol Sci. 1989 Oct;10(10):385–386. doi: 10.1016/0165-6147(89)90177-6. [DOI] [PubMed] [Google Scholar]
  10. Cowen P. J. A role for 5-HT in the action of antidepressant drugs. Pharmacol Ther. 1990;46(1):43–51. doi: 10.1016/0163-7258(90)90033-x. [DOI] [PubMed] [Google Scholar]
  11. Craig D. A., Eglen R. M., Walsh L. K., Perkins L. A., Whiting R. L., Clarke D. E. 5-Methoxytryptamine and 2-methyl-5-hydroxytryptamine-induced desensitization as a discriminative tool for the 5-HT3 and putative 5-HT4 receptors in guinea pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jul;342(1):9–16. doi: 10.1007/BF00178965. [DOI] [PubMed] [Google Scholar]
  12. Dechant K. L., Clissold S. P. Paroxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs. 1991 Feb;41(2):225–253. doi: 10.2165/00003495-199141020-00007. [DOI] [PubMed] [Google Scholar]
  13. Eglen R. M., Swank S. R., Walsh L. K., Whiting R. L. Characterization of 5-HT3 and 'atypical' 5-HT receptors mediating guinea-pig ileal contractions in vitro. Br J Pharmacol. 1990 Nov;101(3):513–520. doi: 10.1111/j.1476-5381.1990.tb14113.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fan P. Effects of antidepressants on the inward current mediated by 5-HT3 receptors in rat nodose ganglion neurones. Br J Pharmacol. 1994 Jul;112(3):741–744. doi: 10.1111/j.1476-5381.1994.tb13140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ford A. P., Clarke D. E. The 5-HT4 receptor. Med Res Rev. 1993 Nov;13(6):633–662. doi: 10.1002/med.2610130603. [DOI] [PubMed] [Google Scholar]
  16. Fox A., Morton I. K. An examination of the 5-HT3 receptor mediating contraction and evoked [3H]-acetylcholine release in the guinea-pig ileum. Br J Pharmacol. 1990 Nov;101(3):553–558. doi: 10.1111/j.1476-5381.1990.tb14119.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. GADDUM J. H. Theories of drug antagonism. Pharmacol Rev. 1957 Jun;9(2):211–218. [PubMed] [Google Scholar]
  18. Greenshaw A. J. Behavioural pharmacology of 5-HT3 receptor antagonists: a critical update on therapeutic potential. Trends Pharmacol Sci. 1993 Jul;14(7):265–270. doi: 10.1016/0165-6147(93)90128-7. [DOI] [PubMed] [Google Scholar]
  19. Grossman C. J., Kilpatrick G. J., Bunce K. T. Development of a radioligand binding assay for 5-HT4 receptors in guinea-pig and rat brain. Br J Pharmacol. 1993 Jul;109(3):618–624. doi: 10.1111/j.1476-5381.1993.tb13617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoyer D., Gozlan H., Bolanos F., Schechter L. E., Hamon M. Interaction of psychotropic drugs with central 5-HT3 recognition sites: fact or artifact? Eur J Pharmacol. 1989 Nov 14;171(1):137–139. doi: 10.1016/0014-2999(89)90438-x. [DOI] [PubMed] [Google Scholar]
  21. Hoyer D., Neijt H. C. Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG108-15 neuroblastoma-glioma cells. Eur J Pharmacol. 1987 Nov 10;143(2):291–292. doi: 10.1016/0014-2999(87)90547-4. [DOI] [PubMed] [Google Scholar]
  22. Kilpatrick G. J., Tyers M. B. Inter-species variants of the 5-HT3 receptor. Biochem Soc Trans. 1992 Feb;20(1):118–121. doi: 10.1042/bst0200118. [DOI] [PubMed] [Google Scholar]
  23. Leonard B. E. Pharmacological differences of serotonin reuptake inhibitors and possible clinical relevance. Drugs. 1992;43 (Suppl 2):3–10. doi: 10.2165/00003495-199200432-00003. [DOI] [PubMed] [Google Scholar]
  24. Lesch K. P., Aulakh C. S., Tolliver T. J., Hill J. L., Murphy D. L. Regulation of G proteins by chronic antidepressant drug treatment in rat brain: tricyclics but not clorgyline increase Go alpha subunits. Eur J Pharmacol. 1991 Aug 14;207(4):361–364. doi: 10.1016/0922-4106(91)90012-7. [DOI] [PubMed] [Google Scholar]
  25. Lesch K. P., Hough C. J., Aulakh C. S., Wolozin B. L., Tolliver T. J., Hill J. L., Akiyoshi J., Chuang D. M., Murphy D. L. Fluoxetine modulates G protein alpha s, alpha q, and alpha 12 subunit mRNA expression in rat brain. Eur J Pharmacol. 1992 Oct 1;227(2):233–237. doi: 10.1016/0922-4106(92)90134-h. [DOI] [PubMed] [Google Scholar]
  26. Martin P., Gozlan H., Puech A. J. 5-HT3 receptor antagonists reverse helpless behaviour in rats. Eur J Pharmacol. 1992 Feb 25;212(1):73–78. doi: 10.1016/0014-2999(92)90074-e. [DOI] [PubMed] [Google Scholar]
  27. McTavish D., Benfield P. Clomipramine. An overview of its pharmacological properties and a review of its therapeutic use in obsessive compulsive disorder and panic disorder. Drugs. 1990 Jan;39(1):136–153. doi: 10.2165/00003495-199039010-00010. [DOI] [PubMed] [Google Scholar]
  28. Menkes D. B., Rasenick M. M., Wheeler M. A., Bitensky M. W. Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long-term antidepressant treatment. Science. 1983 Jan 7;219(4580):65–67. doi: 10.1126/science.6849117. [DOI] [PubMed] [Google Scholar]
  29. Paton W. D., Zar M. A. The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol. 1968 Jan;194(1):13–33. doi: 10.1113/jphysiol.1968.sp008392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peters J. A., Malone H. M., Lambert J. J. Recent advances in the electrophysiological characterization of 5-HT3 receptors. Trends Pharmacol Sci. 1992 Oct;13(10):391–397. doi: 10.1016/0165-6147(92)90119-q. [DOI] [PubMed] [Google Scholar]
  31. Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature. 1985 Jul 11;316(6024):126–131. doi: 10.1038/316126a0. [DOI] [PubMed] [Google Scholar]
  32. Rizzi C. A., Sagrada A., Schiavone A., Schiantarelli P., Cesana R., Schiavi G. B., Ladinsky H., Donetti A. Gastroprokinetic properties of the benzimidazolone derivative BIMU 1, an agonist at 5-hydroxytryptamine4 and antagonist at 5-hydroxytryptamine3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 1994 Apr;349(4):338–345. doi: 10.1007/BF00170878. [DOI] [PubMed] [Google Scholar]
  33. Schmidt A. W., Peroutka S. J. Quantitative molecular analysis predicts 5-hydroxytryptamine3 receptor binding affinity. Mol Pharmacol. 1990 Oct;38(4):511–516. [PubMed] [Google Scholar]
  34. Thomas D. R., Nelson D. R., Johnson A. M. Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology (Berl) 1987;93(2):193–200. doi: 10.1007/BF00179933. [DOI] [PubMed] [Google Scholar]
  35. Tonini M., Rizzi C. A., Manzo L., Onori L. Novel enteric 5-HT4 receptors and gastrointestinal prokinetic action. Pharmacol Res. 1991 Jul;24(1):5–14. doi: 10.1016/1043-6618(91)90059-7. [DOI] [PubMed] [Google Scholar]
  36. Turconi M., Donetti A., Schiavone A., Sagrada A., Montagna E., Nicola M., Cesana R., Rizzi C., Micheletti R. Pharmacological properties of a novel class of 5-HT3 receptor antagonists. Eur J Pharmacol. 1991 Oct 15;203(2):203–211. doi: 10.1016/0014-2999(91)90716-4. [DOI] [PubMed] [Google Scholar]
  37. Wong E. H., Bonhaus D. W., Wu I., Stefanich E., Eglen R. M. Labelling of 5-hydroxytryptamine3 receptors with a novel 5-HT3 receptor ligand, [3H]RS-42358-197. J Neurochem. 1993 Mar;60(3):921–930. doi: 10.1111/j.1471-4159.1993.tb03238.x. [DOI] [PubMed] [Google Scholar]
  38. Zifa E., Fillion G. 5-Hydroxytryptamine receptors. Pharmacol Rev. 1992 Sep;44(3):401–458. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES