Abstract
1. A combined study of receptor binding in central neuronal cell membranes and functional responses in isolated segments of guinea-pig small intestine allowed characterization of the interaction of four antidepressant drugs with central and peripheral 5-HT3 and 5-HT4 receptors. 2. Clomipramine, paroxetine and fluoxetine inhibited [3H]-DAU 6215 binding to 5-HT3 recognition sites in NG 108-15 cells with IC50 values in the range 1.3-4 microM. Litoxetine had an IC50 of 0.3 microM. The specific binding of [3H]-GR 113808 to 5-HT4 recognition sites in pig striatal membranes was inhibited by all four antidepressants with negligible potency (IC50 values > or = 20 microM). 3. In whole ileal segments, concentration-response curves to 5-HT were biphasic, with the high- and low-potency phases involving 5-HT4 and 5-HT3 receptors, respectively. Curves to 2-methyl-5-hydroxytryptamine (2-methyl-5-HT: a 5-HT3 receptor agonist) and 5-methoxytryptamine (5-MeOT: a 5-HT4 receptor agonist) were monophasic. All antidepressants were used at concentrations lacking anticholinoceptor properties, as demonstrated in both electrically stimulated longitudinal muscle-myenteric plexus preparations (LMMPs) and in unstimulated LMMPs following addition of acetylcholine (100 nM). 4. Fluoxetine (0.1-1 microM) and litoxetine (0.3-3 microM) antagonized both the high- and low-potency phases of the 5-HT curve. Schild analysis for the low-potency phase yielded pA2 estimates of 6.6 +/- 0.3 (Schild slope of 1.1) and of 6.6 +/- 0.1 (Schild slope of 1.1), respectively. At higher concentrations (3 microM), fluoxetine markedly inhibited the 5-HT response maximum. Clomipramine (10-300 nM) inhibited, by a mechanism independent of concentration, both phases of the 5-HT curve with a reduction of the maximum response. Paroxetine (1 microM) was ineffective on the high-potency phase, but caused a rightward shift of the low-potency phase (pKB: 6.1 +/- 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angel I., Schoemaker H., Prouteau M., Garreau M., Langer S. Z. Litoxetine: a selective 5-HT uptake inhibitor with concomitant 5-HT3 receptor antagonist and antiemetic properties. Eur J Pharmacol. 1993 Mar 2;232(2-3):139–145. doi: 10.1016/0014-2999(93)90767-c. [DOI] [PubMed] [Google Scholar]
- Benfield P., Heel R. C., Lewis S. P. Fluoxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs. 1986 Dec;32(6):481–508. doi: 10.2165/00003495-198632060-00002. [DOI] [PubMed] [Google Scholar]
- Bond R. A., Ornstein A. G., Clarke D. E. Unsurmountable antagonism to 5-hydroxytryptamine in rat kidney results from pseudoirreversible inhibition rather than multiple receptors or allosteric receptor modulation. J Pharmacol Exp Ther. 1989 May;249(2):401–410. [PubMed] [Google Scholar]
- Bradbury B. J., Baumgold J., Jacobson K. A. Functionalized congener approach for the design of novel muscarinic agents. Synthesis and pharmacological evaluation of N-methyl-N-[4-(1-pyrrolidinyl)-2-butynyl] amides. J Med Chem. 1990 Feb;33(2):741–748. doi: 10.1021/jm00164a044. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Buchheit K. H., Engel G., Mutschler E., Richardson B. Study of the contractile effect of 5-hydroxytryptamine (5-HT) in the isolated longitudinal muscle strip from guinea-pig ileum. Evidence for two distinct release mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 1985 Mar;329(1):36–41. doi: 10.1007/BF00695189. [DOI] [PubMed] [Google Scholar]
- Buchheit K. H., Gamse R., Pfannkuche H. J. SDZ 205-557, a selective, surmountable antagonist for 5-HT4 receptors in the isolated guinea pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1992 Apr;345(4):387–393. doi: 10.1007/BF00176615. [DOI] [PubMed] [Google Scholar]
- Butler A., Elswood C. J., Burridge J., Ireland S. J., Bunce K. T., Kilpatrick G. J., Tyers M. B. The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues. Br J Pharmacol. 1990 Nov;101(3):591–598. doi: 10.1111/j.1476-5381.1990.tb14126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke D. E., Craig D. A., Fozard J. R. The 5-HT4 receptor: naughty, but nice. Trends Pharmacol Sci. 1989 Oct;10(10):385–386. doi: 10.1016/0165-6147(89)90177-6. [DOI] [PubMed] [Google Scholar]
- Cowen P. J. A role for 5-HT in the action of antidepressant drugs. Pharmacol Ther. 1990;46(1):43–51. doi: 10.1016/0163-7258(90)90033-x. [DOI] [PubMed] [Google Scholar]
- Craig D. A., Eglen R. M., Walsh L. K., Perkins L. A., Whiting R. L., Clarke D. E. 5-Methoxytryptamine and 2-methyl-5-hydroxytryptamine-induced desensitization as a discriminative tool for the 5-HT3 and putative 5-HT4 receptors in guinea pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jul;342(1):9–16. doi: 10.1007/BF00178965. [DOI] [PubMed] [Google Scholar]
- Dechant K. L., Clissold S. P. Paroxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs. 1991 Feb;41(2):225–253. doi: 10.2165/00003495-199141020-00007. [DOI] [PubMed] [Google Scholar]
- Eglen R. M., Swank S. R., Walsh L. K., Whiting R. L. Characterization of 5-HT3 and 'atypical' 5-HT receptors mediating guinea-pig ileal contractions in vitro. Br J Pharmacol. 1990 Nov;101(3):513–520. doi: 10.1111/j.1476-5381.1990.tb14113.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan P. Effects of antidepressants on the inward current mediated by 5-HT3 receptors in rat nodose ganglion neurones. Br J Pharmacol. 1994 Jul;112(3):741–744. doi: 10.1111/j.1476-5381.1994.tb13140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ford A. P., Clarke D. E. The 5-HT4 receptor. Med Res Rev. 1993 Nov;13(6):633–662. doi: 10.1002/med.2610130603. [DOI] [PubMed] [Google Scholar]
- Fox A., Morton I. K. An examination of the 5-HT3 receptor mediating contraction and evoked [3H]-acetylcholine release in the guinea-pig ileum. Br J Pharmacol. 1990 Nov;101(3):553–558. doi: 10.1111/j.1476-5381.1990.tb14119.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GADDUM J. H. Theories of drug antagonism. Pharmacol Rev. 1957 Jun;9(2):211–218. [PubMed] [Google Scholar]
- Greenshaw A. J. Behavioural pharmacology of 5-HT3 receptor antagonists: a critical update on therapeutic potential. Trends Pharmacol Sci. 1993 Jul;14(7):265–270. doi: 10.1016/0165-6147(93)90128-7. [DOI] [PubMed] [Google Scholar]
- Grossman C. J., Kilpatrick G. J., Bunce K. T. Development of a radioligand binding assay for 5-HT4 receptors in guinea-pig and rat brain. Br J Pharmacol. 1993 Jul;109(3):618–624. doi: 10.1111/j.1476-5381.1993.tb13617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoyer D., Gozlan H., Bolanos F., Schechter L. E., Hamon M. Interaction of psychotropic drugs with central 5-HT3 recognition sites: fact or artifact? Eur J Pharmacol. 1989 Nov 14;171(1):137–139. doi: 10.1016/0014-2999(89)90438-x. [DOI] [PubMed] [Google Scholar]
- Hoyer D., Neijt H. C. Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG108-15 neuroblastoma-glioma cells. Eur J Pharmacol. 1987 Nov 10;143(2):291–292. doi: 10.1016/0014-2999(87)90547-4. [DOI] [PubMed] [Google Scholar]
- Kilpatrick G. J., Tyers M. B. Inter-species variants of the 5-HT3 receptor. Biochem Soc Trans. 1992 Feb;20(1):118–121. doi: 10.1042/bst0200118. [DOI] [PubMed] [Google Scholar]
- Leonard B. E. Pharmacological differences of serotonin reuptake inhibitors and possible clinical relevance. Drugs. 1992;43 (Suppl 2):3–10. doi: 10.2165/00003495-199200432-00003. [DOI] [PubMed] [Google Scholar]
- Lesch K. P., Aulakh C. S., Tolliver T. J., Hill J. L., Murphy D. L. Regulation of G proteins by chronic antidepressant drug treatment in rat brain: tricyclics but not clorgyline increase Go alpha subunits. Eur J Pharmacol. 1991 Aug 14;207(4):361–364. doi: 10.1016/0922-4106(91)90012-7. [DOI] [PubMed] [Google Scholar]
- Lesch K. P., Hough C. J., Aulakh C. S., Wolozin B. L., Tolliver T. J., Hill J. L., Akiyoshi J., Chuang D. M., Murphy D. L. Fluoxetine modulates G protein alpha s, alpha q, and alpha 12 subunit mRNA expression in rat brain. Eur J Pharmacol. 1992 Oct 1;227(2):233–237. doi: 10.1016/0922-4106(92)90134-h. [DOI] [PubMed] [Google Scholar]
- Martin P., Gozlan H., Puech A. J. 5-HT3 receptor antagonists reverse helpless behaviour in rats. Eur J Pharmacol. 1992 Feb 25;212(1):73–78. doi: 10.1016/0014-2999(92)90074-e. [DOI] [PubMed] [Google Scholar]
- McTavish D., Benfield P. Clomipramine. An overview of its pharmacological properties and a review of its therapeutic use in obsessive compulsive disorder and panic disorder. Drugs. 1990 Jan;39(1):136–153. doi: 10.2165/00003495-199039010-00010. [DOI] [PubMed] [Google Scholar]
- Menkes D. B., Rasenick M. M., Wheeler M. A., Bitensky M. W. Guanosine triphosphate activation of brain adenylate cyclase: enhancement by long-term antidepressant treatment. Science. 1983 Jan 7;219(4580):65–67. doi: 10.1126/science.6849117. [DOI] [PubMed] [Google Scholar]
- Paton W. D., Zar M. A. The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol. 1968 Jan;194(1):13–33. doi: 10.1113/jphysiol.1968.sp008392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters J. A., Malone H. M., Lambert J. J. Recent advances in the electrophysiological characterization of 5-HT3 receptors. Trends Pharmacol Sci. 1992 Oct;13(10):391–397. doi: 10.1016/0165-6147(92)90119-q. [DOI] [PubMed] [Google Scholar]
- Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature. 1985 Jul 11;316(6024):126–131. doi: 10.1038/316126a0. [DOI] [PubMed] [Google Scholar]
- Rizzi C. A., Sagrada A., Schiavone A., Schiantarelli P., Cesana R., Schiavi G. B., Ladinsky H., Donetti A. Gastroprokinetic properties of the benzimidazolone derivative BIMU 1, an agonist at 5-hydroxytryptamine4 and antagonist at 5-hydroxytryptamine3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 1994 Apr;349(4):338–345. doi: 10.1007/BF00170878. [DOI] [PubMed] [Google Scholar]
- Schmidt A. W., Peroutka S. J. Quantitative molecular analysis predicts 5-hydroxytryptamine3 receptor binding affinity. Mol Pharmacol. 1990 Oct;38(4):511–516. [PubMed] [Google Scholar]
- Thomas D. R., Nelson D. R., Johnson A. M. Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology (Berl) 1987;93(2):193–200. doi: 10.1007/BF00179933. [DOI] [PubMed] [Google Scholar]
- Tonini M., Rizzi C. A., Manzo L., Onori L. Novel enteric 5-HT4 receptors and gastrointestinal prokinetic action. Pharmacol Res. 1991 Jul;24(1):5–14. doi: 10.1016/1043-6618(91)90059-7. [DOI] [PubMed] [Google Scholar]
- Turconi M., Donetti A., Schiavone A., Sagrada A., Montagna E., Nicola M., Cesana R., Rizzi C., Micheletti R. Pharmacological properties of a novel class of 5-HT3 receptor antagonists. Eur J Pharmacol. 1991 Oct 15;203(2):203–211. doi: 10.1016/0014-2999(91)90716-4. [DOI] [PubMed] [Google Scholar]
- Wong E. H., Bonhaus D. W., Wu I., Stefanich E., Eglen R. M. Labelling of 5-hydroxytryptamine3 receptors with a novel 5-HT3 receptor ligand, [3H]RS-42358-197. J Neurochem. 1993 Mar;60(3):921–930. doi: 10.1111/j.1471-4159.1993.tb03238.x. [DOI] [PubMed] [Google Scholar]
- Zifa E., Fillion G. 5-Hydroxytryptamine receptors. Pharmacol Rev. 1992 Sep;44(3):401–458. [PubMed] [Google Scholar]