Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Mar;114(5):981–986. doi: 10.1111/j.1476-5381.1995.tb13301.x

Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells.

D T Thwaites 1, M Cavet 1, B H Hirst 1, N L Simmons 1
PMCID: PMC1510318  PMID: 7780654

Abstract

1. The role of proton-linked solute transport in the absorption of the angiotensin-converting enzyme (ACE) inhibitors captopril, enalapril maleate and lisinopril has been investigated in human intestinal epithelial (Caco-2) cell monolayers. 2. In Caco-2 cell monolayers the transepithelial apical-to-basal transport and intracellular accumulation (across the apical membrane) of the hydrolysis-resistant dipeptide, glycylsarcosine (Gly-Sar), were stimulated by acidification (pH 6.0) of the apical environment. In contrast, transport and intracellular accumulation of the angiotensin-converting enzyme (ACE) inhibitor, lisinopril, were low (lower than the paracellular marker mannitol) and were not stimulated by apical acidification. Furthermore, [14C]-lisinopril transport showed little reduction when excess unlabelled lisinopril (20 mM) was added. 3. pH-dependent [14C]-Gly-Sar transport was inhibited by the orally-active ACE inhibitors, enalapril maleate and captopril (both at 20 mM). Lisinopril (20 mM) had a relatively small inhibitory effect on [14C]-Gly-Sar transport. pH-dependent [3H]-proline transport was not inhibited by captopril, enalapril maleate or lisinopril. 4. Experiments with BCECF[2',7',-bis(2-carboxyethyl)-5(6)-carboxyfluorescein]-loaded Caco-2 cells demonstrate that dipeptide transport across the apical membrane is associated with proton flow into the cell. The dipeptide, carnosine (beta-alanyl-L-histidine) and the ACE inhibitors enalapril maleate and captopril, all lowered intracellular pH when perfused at the apical surface of Caco-2 cell monolayers. However, lisinopril was without effect. 5. The effects of enalapril maleate and captopril on [14C]-Gly-Sar transport and pHi suggest that these two ACE inhibitors share the H(+)-coupled mechanism involved in dipeptide transport.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
981

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheung H. S., Wang F. L., Ondetti M. A., Sabo E. F., Cushman D. W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biol Chem. 1980 Jan 25;255(2):401–407. [PubMed] [Google Scholar]
  2. Dantzig A. H., Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim Biophys Acta. 1990 Sep 7;1027(3):211–217. doi: 10.1016/0005-2736(90)90309-c. [DOI] [PubMed] [Google Scholar]
  3. Duchin K. L., Singhvi S. M., Willard D. A., Migdalof B. H., McKinstry D. N. Captopril kinetics. Clin Pharmacol Ther. 1982 Apr;31(4):452–458. doi: 10.1038/clpt.1982.59. [DOI] [PubMed] [Google Scholar]
  4. Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  5. Friedman D. I., Amidon G. L. Intestinal absorption mechanism of dipeptide angiotensin converting enzyme inhibitors of the lysyl-proline type: lisinopril and SQ 29,852. J Pharm Sci. 1989 Dec;78(12):995–998. doi: 10.1002/jps.2600781205. [DOI] [PubMed] [Google Scholar]
  6. Friedman D. I., Amidon G. L. Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm Res. 1989 Dec;6(12):1043–1047. doi: 10.1023/a:1015978420797. [DOI] [PubMed] [Google Scholar]
  7. Ganapathy, Leibach F. H. Is intestinal peptide transport energized by a proton gradient? Am J Physiol. 1985 Aug;249(2 Pt 1):G153–G160. doi: 10.1152/ajpgi.1985.249.2.G153. [DOI] [PubMed] [Google Scholar]
  8. Hidalgo I. J., Raub T. J., Borchardt R. T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989 Mar;96(3):736–749. [PubMed] [Google Scholar]
  9. Hu M., Amidon G. L. Passive and carrier-mediated intestinal absorption components of captopril. J Pharm Sci. 1988 Dec;77(12):1007–1011. doi: 10.1002/jps.2600771204. [DOI] [PubMed] [Google Scholar]
  10. Humphrey M. J., Ringrose P. S. Peptides and related drugs: a review of their absorption, metabolism, and excretion. Drug Metab Rev. 1986;17(3-4):283–310. doi: 10.3109/03602538608998293. [DOI] [PubMed] [Google Scholar]
  11. Inui K., Yamamoto M., Saito H. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1992 Apr;261(1):195–201. [PubMed] [Google Scholar]
  12. Lucas M. L., Schneider W., Haberich F. J., Blair J. A. Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum. Proc R Soc Lond B Biol Sci. 1975 Dec 31;192(1106):39–48. doi: 10.1098/rspb.1975.0150. [DOI] [PubMed] [Google Scholar]
  13. Mathews D. M., Adibi S. A. Peptide absorption. Gastroenterology. 1976 Jul;71(1):151–161. [PubMed] [Google Scholar]
  14. McEwan G. T., Daniel H., Fett C., Burgess M. N., Lucas M. L. The effect of Escherichia coli STa enterotoxin and other secretagogues on mucosal surface pH of rat small intestine in vivo. Proc R Soc Lond B Biol Sci. 1988 Jul 22;234(1275):219–237. doi: 10.1098/rspb.1988.0045. [DOI] [PubMed] [Google Scholar]
  15. Saito H., Inui K. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. Am J Physiol. 1993 Aug;265(2 Pt 1):G289–G294. doi: 10.1152/ajpgi.1993.265.2.G289. [DOI] [PubMed] [Google Scholar]
  16. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics. Biochim Biophys Acta. 1993 Sep 19;1151(2):237–245. doi: 10.1016/0005-2736(93)90108-c. [DOI] [PubMed] [Google Scholar]
  17. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. J Biol Chem. 1993 Apr 15;268(11):7640–7642. [PubMed] [Google Scholar]
  18. Thwaites D. T., Hirst B. H., Simmons N. L. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption. Br J Pharmacol. 1994 Nov;113(3):1050–1056. doi: 10.1111/j.1476-5381.1994.tb17099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thwaites D. T., McEwan G. T., Brown C. D., Hirst B. H., Simmons N. L. L-alanine absorption in human intestinal Caco-2 cells driven by the proton electrochemical gradient. J Membr Biol. 1994 Jun;140(2):143–151. doi: 10.1007/BF00232902. [DOI] [PubMed] [Google Scholar]
  20. Thwaites D. T., McEwan G. T., Cook M. J., Hirst B. H., Simmons N. L. H(+)-coupled (Na(+)-independent) proline transport in human intestinal (Caco-2) epithelial cell monolayers. FEBS Lett. 1993 Oct 25;333(1-2):78–82. doi: 10.1016/0014-5793(93)80378-8. [DOI] [PubMed] [Google Scholar]
  21. Tocco D. J., deLuna F. A., Duncan A. E., Vassil T. C., Ulm E. H. The physiological disposition and metabolism of enalapril maleate in laboratory animals. Drug Metab Dispos. 1982 Jan-Feb;10(1):15–19. [PubMed] [Google Scholar]
  22. Ulm E. H., Hichens M., Gomez H. J., Till A. E., Hand E., Vassil T. C., Biollaz J., Brunner H. R., Schelling J. L. Enalapril maleate and a lysine analogue (MK-521): disposition in man. Br J Clin Pharmacol. 1982 Sep;14(3):357–362. doi: 10.1111/j.1365-2125.1982.tb01991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Watson A. J., Levine S., Donowitz M., Montrose M. H. Kinetics and regulation of a polarized Na(+)-H+ exchanger from Caco-2 cells, a human intestinal cell line. Am J Physiol. 1991 Aug;261(2 Pt 1):G229–G238. doi: 10.1152/ajpgi.1991.261.2.G229. [DOI] [PubMed] [Google Scholar]
  24. Wyvratt M. J., Patchett A. A. Recent developments in the design of angiotensin-converting enzyme inhibitors. Med Res Rev. 1985 Oct-Dec;5(4):483–531. doi: 10.1002/med.2610050405. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES