Abstract
1. We examined the effects of methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), a beta-carboline inverse agonist for the benzodiazepine site, on gamma-aminobutyric acid (GABA)-induced Cl-currents in several cloned rat GABAA receptor subtypes expressed in human embryonic kidney cells. The Cl- currents were measured in the whole cell configuration of patch clamp techniques. 2. DMCM at low concentrations (< 0.5 microM) occupying only the benzodiazepine site decreased GABA-induced Cl currents in the alpha 1 beta 2 gamma 2 and alpha 3 beta 2 gamma 2 subtypes as expected from an inverse agonist, but produced no change in the alpha 6 beta 2 gamma 2 subtype (perhaps a neutral antagonist). The drug at higher concentrations (> 0.5 microM) enhanced Cl- currents in all the subtypes with a half maximal concentration of 6 to 20 microM, depending on the alpha isoform. In the alpha 1 beta 2 subtype, which is without the benzodiazepine site, DMCM monophasically increased Cl- currents with a half maximal concentration of 1.9 microM. 3. Ro 15-1788 (a classical benzodiazepine antagonist) had no effect on Cl- current enhancement by DMCM and, in fact, increased the current level through blocking current inhibition by DMCM via the benzodiazepine site. Also, Cl- current enhancement by pentobarbitone or by 3 alpha, 21-dihydroxy-5 alpha-pregnan-20-one was additive to that by DMCM at saturating doses. It appears that the agonist site for DMCM is distinct from those for benzodiazepines, barbiturates and neurosteroids. 4. Among beta-carboline analogues, methyl-beta-carboline-3-carboxylate and propyl-beta-carboline-3-carboxylate markedly enhanced GABA-induced Cl currents in the alpha 1 beta 2 gamma 2 subtype, while N-methyl-beta-carboline-3-carboxamide and 1-methyl-7-methoxy-3,4-dihydro-beta-carboline did not. It appears that the 3-carboxyl ester moiety is necessary for beta-carbolines to interact with a novel site on GABAA receptors as agonists.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braestrup C., Schmiechen R., Neef G., Nielsen M., Petersen E. N. Interaction of convulsive ligands with benzodiazepine receptors. Science. 1982 Jun 11;216(4551):1241–1243. doi: 10.1126/science.6281892. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hamilton B. J., Lennon D. J., Im H. K., Im W. B., Seeburg P. H., Carter D. B. Stable expression of cloned rat GABAA receptor subunits in a human kidney cell line. Neurosci Lett. 1993 Apr 30;153(2):206–209. doi: 10.1016/0304-3940(93)90323-d. [DOI] [PubMed] [Google Scholar]
- Im H. K., Im W. B., Judge T. M., Gammill R. B., Hamilton B. J., Carter D. B., Pregenzer J. F. Substituted pyrazinones, a new class of allosteric modulators for gamma-aminobutyric acidA receptors. Mol Pharmacol. 1993 Aug;44(2):468–472. [PubMed] [Google Scholar]
- Lüddens H., Pritchett D. B., Köhler M., Killisch I., Keinänen K., Monyer H., Sprengel R., Seeburg P. H. Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature. 1990 Aug 16;346(6285):648–651. doi: 10.1038/346648a0. [DOI] [PubMed] [Google Scholar]
- Pritchett D. B., Sontheimer H., Shivers B. D., Ymer S., Kettenmann H., Schofield P. R., Seeburg P. H. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature. 1989 Apr 13;338(6216):582–585. doi: 10.1038/338582a0. [DOI] [PubMed] [Google Scholar]
- Sieghart W. GABAA receptors: ligand-gated Cl- ion channels modulated by multiple drug-binding sites. Trends Pharmacol Sci. 1992 Dec;13(12):446–450. doi: 10.1016/0165-6147(92)90142-s. [DOI] [PubMed] [Google Scholar]
