Abstract
1. Diabetes mellitus is associated with changes in gastrointestinal motility. The effects of experimental diabetes, induced by streptozotocin administration to rats 3-4 weeks previously, on the nitric oxide (NO)-mediated (nitrergic) relaxation of the duodenum have now been investigated. 2. The non-adrenergic, non-cholinergic (NANC) relaxation of the isolated duodenum induced by nicotine (0.3-10 microM) or the nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP; 10 microM) was inhibited by the NO synthase inhibitor, NG-nitro-L-arginine (3-100 microM). 3. This nitrergic relaxation induced by nicotine or DMPP of the duodenum from diabetic rats was substantially smaller than that of the tissue from control rats. 4. By contrast, the relaxation of the duodenum from diabetic rats to the NO donor, nitroprusside (0.3-10 microM) was similar to that of control tissue, whereas the relaxation to ATP (0.1-3 microM) was enhanced to a small but significant degree. 5. Incubation of duodenal tissue from control rats at 4 degrees C for 72 h, which leads to neuronal disruption, significantly attenuated the relaxation to nicotine or DMPP whereas the relaxation induced by nitroprusside or ATP was not affected. Comparable cold-storage did not affect the endothelium-dependent relaxation of rat aortic rings induced by acetylcholine (0.01-2 microM). 6. The calcium-dependent NO synthase activity in duodenal tissue, determined by the conversion of radiolabelled L-arginine to citrulline, was significantly reduced in cold-stored tissue and in tissue obtained from diabetic rats. 7. These findings in the rat duodenum indicate that a reduction in intestinal NO synthase activity is associated with an impairment of the NANC relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azadzoi K. M., Saenz de Tejada I. Diabetes mellitus impairs neurogenic and endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle. J Urol. 1992 Nov;148(5):1587–1591. doi: 10.1016/s0022-5347(17)36975-6. [DOI] [PubMed] [Google Scholar]
- Bailey C. J., Flatt P. R., Deacon C. F., Shaw C., Conlon J. M. Substance P, neurokinin A, vasoactive intestinal polypeptide and gastrin releasing peptide in the intestine and pancreas of spontaneously obese-diabetic mice. Regul Pept. 1986 Dec 30;16(3-4):339–348. doi: 10.1016/0167-0115(86)90034-0. [DOI] [PubMed] [Google Scholar]
- Ballmann M., Conlon J. M. Changes in the somatostatin, substance P and vasoactive intestinal polypeptide content of the gastrointestinal tract following streptozotocin-induced diabetes in the rat. Diabetologia. 1985 Jun;28(6):355–358. doi: 10.1007/BF00283143. [DOI] [PubMed] [Google Scholar]
- Belai A., Burnstock G. Selective damage of intrinsic calcitonin gene-related peptide-like immunoreactive enteric nerve fibers in streptozotocin-induced diabetic rats. Gastroenterology. 1987 Mar;92(3):730–734. doi: 10.1016/0016-5085(87)90025-4. [DOI] [PubMed] [Google Scholar]
- Belai A., Lincoln J., Milner P., Crowe R., Loesch A., Burnstock G. Enteric nerves in diabetic rats: increase in vasoactive intestinal polypeptide but not substance P. Gastroenterology. 1985 Nov;89(5):967–976. doi: 10.1016/0016-5085(85)90195-7. [DOI] [PubMed] [Google Scholar]
- Belai A., Schmidt H. H., Hoyle C. H., Hassall C. J., Saffrey M. J., Moss J., Förstermann U., Murad F., Burnstock G. Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci Lett. 1992 Aug 31;143(1-2):60–64. doi: 10.1016/0304-3940(92)90233-w. [DOI] [PubMed] [Google Scholar]
- Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
- Bult H., Boeckxstaens G. E., Pelckmans P. A., Jordaens F. H., Van Maercke Y. M., Herman A. G. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990 May 24;345(6273):346–347. doi: 10.1038/345346a0. [DOI] [PubMed] [Google Scholar]
- Chesta J., Debnam E. S., Srai S. K., Epstein O. Delayed stomach to caecum transit time in the diabetic rat. Possible role of hyperglucagonaemia. Gut. 1990 Jun;31(6):660–662. doi: 10.1136/gut.31.6.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desai K. M., Sessa W. C., Vane J. R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature. 1991 Jun 6;351(6326):477–479. doi: 10.1038/351477a0. [DOI] [PubMed] [Google Scholar]
- Diederich D., Skopec J., Diederich A., Dai F. X. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol. 1994 Mar;266(3 Pt 2):H1153–H1161. doi: 10.1152/ajpheart.1994.266.3.H1153. [DOI] [PubMed] [Google Scholar]
- Gibson A., Babbedge R., Brave S. R., Hart S. L., Hobbs A. J., Tucker J. F., Wallace P., Moore P. K. An investigation of some S-nitrosothiols, and of hydroxy-arginine, on the mouse anococcygeus. Br J Pharmacol. 1992 Nov;107(3):715–721. doi: 10.1111/j.1476-5381.1992.tb14512.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grider J. R., Murthy K. S., Jin J. G., Makhlouf G. M. Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol. 1992 Apr;262(4 Pt 1):G774–G778. doi: 10.1152/ajpgi.1992.262.4.G774. [DOI] [PubMed] [Google Scholar]
- HOLMAN M. E., HUGHES J. R. INHIBITION OF INTESTINAL SMOOTH MUSCLE. Aust J Exp Biol Med Sci. 1965 Jun;43:277–290. doi: 10.1038/icb.1965.27. [DOI] [PubMed] [Google Scholar]
- Hattori K., Kurahashi K., Mori J., Shibata S. The effect of cold storage on the adrenergic mechanisms of intestinal smooth muscle. Br J Pharmacol. 1972 Nov;46(3):423–437. doi: 10.1111/j.1476-5381.1972.tb08140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iber F. L., Parveen S., Vandrunen M., Sood K. B., Reza F., Serlovsky R., Reddy S. Relation of symptoms to impaired stomach, small bowel, and colon motility in long-standing diabetes. Dig Dis Sci. 1993 Jan;38(1):45–50. doi: 10.1007/BF01296772. [DOI] [PubMed] [Google Scholar]
- Irie K., Muraki T., Furukawa K., Nomoto T. L-NG-nitro-arginine inhibits nicotine-induced relaxation of isolated rat duodenum. Eur J Pharmacol. 1991 Sep 17;202(2):285–288. doi: 10.1016/0014-2999(91)90307-c. [DOI] [PubMed] [Google Scholar]
- Lash J. M., Bohlen H. G. Structural and functional origins of suppressed acetylcholine vasodilation in diabetic rat intestinal arterioles. Circ Res. 1991 Nov;69(5):1259–1268. doi: 10.1161/01.res.69.5.1259. [DOI] [PubMed] [Google Scholar]
- Lawrence E., Brain S. D. Altered microvascular reactivity to endothelin-1, endothelin-3 and NG-nitro-L-arginine methyl ester in streptozotocin-induced diabetes mellitus. Br J Pharmacol. 1992 Aug;106(4):1035–1040. doi: 10.1111/j.1476-5381.1992.tb14452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li C. G., Rand M. J. Nitric oxide and vasoactive intestinal polypeptide mediate non-adrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric fundus. Eur J Pharmacol. 1990 Dec 4;191(3):303–309. doi: 10.1016/0014-2999(90)94162-q. [DOI] [PubMed] [Google Scholar]
- Lincoln J., Bokor J. T., Crowe R., Griffith S. G., Haven A. J., Burnstock G. Myenteric plexus in streptozotocin-treated rats. Neurochemical and histochemical evidence for diabetic neuropathy in the gut. Gastroenterology. 1984 Apr;86(4):654–661. [PubMed] [Google Scholar]
- Lucas P. D., Sardar A. M. Effects of diabetes on cholinergic transmission in two rat gut preparations. Gastroenterology. 1991 Jan;100(1):123–128. doi: 10.1016/0016-5085(91)90591-8. [DOI] [PubMed] [Google Scholar]
- Mathison R., Davison J. S. Modified smooth muscle responses of jejunum in streptozotocin-diabetic rats. J Pharmacol Exp Ther. 1988 Mar;244(3):1045–1050. [PubMed] [Google Scholar]
- Meraji S., Jayakody L., Senaratne M. P., Thomson A. B., Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes. 1987 Aug;36(8):978–981. doi: 10.2337/diab.36.8.978. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowak T. V., Harrington B., Kalbfleisch J. H., Amatruda J. M. Evidence for abnormal cholinergic neuromuscular transmission in diabetic rat small intestine. Gastroenterology. 1986 Jul;91(1):124–132. doi: 10.1016/0016-5085(86)90448-8. [DOI] [PubMed] [Google Scholar]
- Oyama Y., Kawasaki H., Hattori Y., Kanno M. Attenuation of endothelium-dependent relaxation in aorta from diabetic rats. Eur J Pharmacol. 1986 Dec 2;132(1):75–78. doi: 10.1016/0014-2999(86)90013-0. [DOI] [PubMed] [Google Scholar]
- Pieper G. M., Mei D. A., Langenstroer P., O'Rourke S. T. Bioassay of endothelium-derived relaxing factor in diabetic rat aorta. Am J Physiol. 1992 Sep;263(3 Pt 2):H676–H680. doi: 10.1152/ajpheart.1992.263.3.H676. [DOI] [PubMed] [Google Scholar]
- Rajfer J., Aronson W. J., Bush P. A., Dorey F. J., Ignarro L. J. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med. 1992 Jan 9;326(2):90–94. doi: 10.1056/NEJM199201093260203. [DOI] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saenz de Tejada I., Goldstein I., Azadzoi K., Krane R. J., Cohen R. A. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med. 1989 Apr 20;320(16):1025–1030. doi: 10.1056/NEJM198904203201601. [DOI] [PubMed] [Google Scholar]
- Sanders K. M., Ward S. M. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol. 1992 Mar;262(3 Pt 1):G379–G392. doi: 10.1152/ajpgi.1992.262.3.G379. [DOI] [PubMed] [Google Scholar]
- Taylor P. D., McCarthy A. L., Thomas C. R., Poston L. Endothelium-dependent relaxation and noradrenaline sensitivity in mesenteric resistance arteries of streptozotocin-induced diabetic rats. Br J Pharmacol. 1992 Oct;107(2):393–399. doi: 10.1111/j.1476-5381.1992.tb12757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tepperman B. L., Brown J. F., Whittle B. J. Nitric oxide synthase induction and intestinal epithelial cell viability in rats. Am J Physiol. 1993 Aug;265(2 Pt 1):G214–G218. doi: 10.1152/ajpgi.1993.265.2.G214. [DOI] [PubMed] [Google Scholar]
- Toda N., Baba H., Okamura T. Role of nitric oxide in non-adrenergic, non-cholinergic nerve-mediated relaxation in dog duodenal longitudinal muscle strips. Jpn J Pharmacol. 1990 Jun;53(2):281–284. doi: 10.1254/jjp.53.281. [DOI] [PubMed] [Google Scholar]
- Török J., Kristek F., Mokrásová M. Endothelium-dependent relaxation in rabbit aorta after cold storage. Eur J Pharmacol. 1993 Apr 1;228(5-6):313–319. doi: 10.1016/0926-6917(93)90066-y. [DOI] [PubMed] [Google Scholar]
- Way K. J., Reid J. J. Nitric oxide-mediated neurotransmission is attenuated in the anococcygeus muscle from diabetic rats. Diabetologia. 1994 Mar;37(3):232–237. doi: 10.1007/BF00398048. [DOI] [PubMed] [Google Scholar]
- Whittle B. J., Boughton-Smith N. K., Moncada S. Biosynthesis and role of the endothelium-derived vasodilator, nitric oxide, in the gastric mucosa. Ann N Y Acad Sci. 1992;664:126–139. doi: 10.1111/j.1749-6632.1992.tb39755.x. [DOI] [PubMed] [Google Scholar]
- Yang R., Arem R., Chan L. Gastrointestinal tract complications of diabetes mellitus. Pathophysiology and management. Arch Intern Med. 1984 Jun;144(6):1251–1256. [PubMed] [Google Scholar]



