Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Mar;114(6):1250–1256. doi: 10.1111/j.1476-5381.1995.tb13340.x

Comparative study of endotoxin-induced hypotension in kininogen-deficient rats with that in normal rats.

A Ueno 1, H Ishida 1, S Oh-ishi 1
PMCID: PMC1510346  PMID: 7620716

Abstract

1. The aim of this study was to clarify the role of endogenous bradykinin (BK) in the hypotensive response induced by lipopolysaccharide (LPS) by comparing the degree of hypotension caused by LPS in a strain of specific pathogen-free (SPF) Brown Norway (B/N), kininogen-deficient mutant Katholiek rats with that of B/N normal Kitasato rats. 2. The dose-dependent hypotensive responses caused by intravenous injection of BK (1-100 nmol kg-1) or platelet-activating factor (PAF, 0.003-1 microgram kg-1), were not different in the two strains of rats used. However, there was a strong difference in the hypotensive response induced by LPS in kininogen-deficient and normal rats; in normal rats the hypotensive response was composed of two phases (15 min and 70-80 min after LPS injection), but in kininogen-deficient rats LPS caused a delayed (second phase), but not an acute (first phase) hypotension. 3. We demonstrate that Hoe 140 (1 mg kg-1, i.v.) is a potent, selective, and long-lasting antagonist of the hypotensive effects of BK. Hoe 140 diminished the hypotension caused by LPS in normal rats to the level observed in kininogen-deficient rats, but had no effect on the hypotension caused by LPS in kininogen-deficient rats. 4. TCV309 (0.1 mg kg-1, i.v.) selectively inhibited the hypotension caused by repetitive injection of PAF for up to 180 min. Pretreatment with TCV309 caused a near complete inhibition of the LPS-induced hypotension in kininogen-deficient and normal B/N rats. 5. In the normal rats, dexamethasone (0.5 mg kg-1, i.p.) inhibited the second phase of the hypotension induced by LPS, but not the first phase of the hypotension.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1250

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazan N. G., Fletcher B. S., Herschman H. R., Mukherjee P. K. Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5252–5256. doi: 10.1073/pnas.91.12.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cannon J. G., Tompkins R. G., Gelfand J. A., Michie H. R., Stanford G. G., van der Meer J. W., Endres S., Lonnemann G., Corsetti J., Chernow B. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis. 1990 Jan;161(1):79–84. doi: 10.1093/infdis/161.1.79. [DOI] [PubMed] [Google Scholar]
  3. Chang S. W., Feddersen C. O., Henson P. M., Voelkel N. F. Platelet-activating factor mediates hemodynamic changes and lung injury in endotoxin-treated rats. J Clin Invest. 1987 May;79(5):1498–1509. doi: 10.1172/JCI112980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Damas J., Adam A. Congenital deficiency in plasma kallikrein and kininogens in the brown Norway rat. Experientia. 1980 May 15;36(5):586–587. doi: 10.1007/BF01965817. [DOI] [PubMed] [Google Scholar]
  5. Danckwardt L., Shimizu I., Bönner G., Rettig R., Unger T. Converting enzyme inhibition in kinin-deficient brown Norway rats. Hypertension. 1990 Oct;16(4):429–435. doi: 10.1161/01.hyp.16.4.429. [DOI] [PubMed] [Google Scholar]
  6. DeWitt D. L., Meade E. A. Serum and glucocorticoid regulation of gene transcription and expression of the prostaglandin H synthase-1 and prostaglandin H synthase-2 isozymes. Arch Biochem Biophys. 1993 Oct;306(1):94–102. doi: 10.1006/abbi.1993.1485. [DOI] [PubMed] [Google Scholar]
  7. Dobrowsky R. T., Voyksner R. D., Olson N. C. Effect of SRI 63-675 on hemodynamics and blood PAF levels during porcine endotoxemia. Am J Physiol. 1991 May;260(5 Pt 2):H1455–H1465. doi: 10.1152/ajpheart.1991.260.5.H1455. [DOI] [PubMed] [Google Scholar]
  8. Fleming I., Dambacher T., Busse R. Endothelium-derived kinins account for the immediate response of endothelial cells to bacterial lipopolysaccharide. J Cardiovasc Pharmacol. 1992;20 (Suppl 12):S135–S138. doi: 10.1097/00005344-199204002-00038. [DOI] [PubMed] [Google Scholar]
  9. Flohé S., Heinrich P. C., Schneider J., Wendel A., Flohé L. Time course of IL-6 and TNF alpha release during endotoxin-induced endotoxin tolerance in rats. Biochem Pharmacol. 1991 Jun 1;41(11):1607–1614. doi: 10.1016/0006-2952(91)90161-w. [DOI] [PubMed] [Google Scholar]
  10. Griesbacher T., Lembeck F. Analysis of the antagonistic actions of HOE 140 and other novel bradykinin analogues on the guinea-pig ileum. Eur J Pharmacol. 1992 Feb 18;211(3):393–398. doi: 10.1016/0014-2999(92)90397-m. [DOI] [PubMed] [Google Scholar]
  11. Hayashi I., Fujie H., Mita M., Oh-ishi S. Characterization of the heredity of kininogen deficiency in brown Norway Katholiek strain rats. Life Sci. 1992;51(2):135–142. doi: 10.1016/0024-3205(92)90007-c. [DOI] [PubMed] [Google Scholar]
  12. Hayashi I., Ino T., Kato H., Iwanaga S., Nakano T., Oh-ishi S. Demonstration of the third kininogen in high and low molecular weight kininogens-deficient Brown Norway Katholiek rat. Thromb Res. 1984 Dec 15;36(6):509–516. doi: 10.1016/0049-3848(84)90190-7. [DOI] [PubMed] [Google Scholar]
  13. Herman C. M., Oshima G., Erdös E. G. The effect of adrenocorticosteroid pretreatment on kinin system and coagulation response to septic shock in the baboon. J Lab Clin Med. 1974 Nov;84(5):731–739. [PubMed] [Google Scholar]
  14. Hock F. J., Wirth K., Albus U., Linz W., Gerhards H. J., Wiemer G., Henke S., Breipohl G., König W., Knolle J. Hoe 140 a new potent and long acting bradykinin-antagonist: in vitro studies. Br J Pharmacol. 1991 Mar;102(3):769–773. doi: 10.1111/j.1476-5381.1991.tb12248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KONTOS H. A., MAGEE J. H., SHAPIRO W., PATTERSON J. L., Jr GENERAL AND REGIONAL CIRCULATORY EFFECTS OF SYNTHETIC BRADYKININ IN MAN. Circ Res. 1964 Apr;14:351–356. doi: 10.1161/01.res.14.4.351. [DOI] [PubMed] [Google Scholar]
  16. Katori M., Majima M., Odoi-Adome R., Sunahara N., Uchida Y. Evidence for the involvement of a plasma kallikrein-kinin system in the immediate hypotension produced by endotoxin in anaesthetized rats. Br J Pharmacol. 1989 Dec;98(4):1383–1391. doi: 10.1111/j.1476-5381.1989.tb12688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kilbourn R. G., Jubran A., Gross S. S., Griffith O. W., Levi R., Adams J., Lodato R. F. Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1132–1138. doi: 10.1016/0006-291x(90)91565-a. [DOI] [PubMed] [Google Scholar]
  18. Klosterhalfen B., Hörstmann-Jungemann K., Vogel P., Flohé S., Offner F., Kirkpatrick C. J., Heinrich P. C. Time course of various inflammatory mediators during recurrent endotoxemia. Biochem Pharmacol. 1992 May 28;43(10):2103–2109. doi: 10.1016/0006-2952(92)90167-h. [DOI] [PubMed] [Google Scholar]
  19. Knowles R. G., Salter M., Brooks S. L., Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1042–1048. doi: 10.1016/0006-291x(90)91551-3. [DOI] [PubMed] [Google Scholar]
  20. Moritoki H., Hisayama T., Takeuchi S., Miyano H., Kondoh W. Involvement of nitric oxide pathway in the PAF-induced relaxation of rat thoracic aorta. Br J Pharmacol. 1992 Sep;107(1):196–201. doi: 10.1111/j.1476-5381.1992.tb14486.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nies A. S., Forsyth R. P., Williams H. E., Melmon K. L. Contribution of kinins to endotoxin shock in unanesthetized Rhesus monkeys. Circ Res. 1968 Feb;22(2):155–164. doi: 10.1161/01.res.22.2.155. [DOI] [PubMed] [Google Scholar]
  22. Nishijima H., Weil M. H., Shubin H., Cavanilles J. Hemodynamic and metabolic studies on shock associated with gram negative bacteremia. Medicine (Baltimore) 1973 Jul;52(4):287–294. doi: 10.1097/00005792-197307000-00007. [DOI] [PubMed] [Google Scholar]
  23. Oh-Ishi S., Hayashi I., Hayashi M., Yamaki K., Yamasu A., Nakano T., Utsunomiya I., Nagashima Y. Evidence for a role of the plasma kallikrein-kinin system in acute inflammation: reduced exudation during carrageenin- and kaolin-pleurisies in kininogen-deficient rats. Agents Actions. 1986 Jun;18(3-4):450–454. doi: 10.1007/BF01965011. [DOI] [PubMed] [Google Scholar]
  24. Oh-ishi S., Hayashi I., Satoh K., Nakano T. Prolonged activated partial thromboplastin time and deficiency of high molecular weight kininogen in brown Norway rat mutant (Katholiek strain). Thromb Res. 1984 Feb 15;33(4):371–377. doi: 10.1016/0049-3848(84)90076-8. [DOI] [PubMed] [Google Scholar]
  25. Oh-ishi S., Hayashi I., Utsunomiya I., Hayashi M., Yamaki K., Yamasu A., Nakano T. Roles of kallikrein-kinin system in acute inflammation: studies on high- and low-molecular weight kininogens-deficient rats (B/N-Katholiek strain). Agents Actions. 1987 Aug;21(3-4):384–386. doi: 10.1007/BF01966523. [DOI] [PubMed] [Google Scholar]
  26. Oh-ishi S., Satoh K., Hayashi I., Yamazaki K., Nakano T. Differences in prekallikrein and high molecular weight kininogen levels in two strains of Brown Norway rat (Kitasato strain and Katholiek strain). Thromb Res. 1982 Oct 1;28(1):143–147. doi: 10.1016/0049-3848(82)90043-3. [DOI] [PubMed] [Google Scholar]
  27. Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sakamoto T., Elwood W., Barnes P. J., Chung K. F. Effect of Hoe 140, a new bradykinin receptor antagonist, on bradykinin- and platelet-activating factor-induced bronchoconstriction and airway microvascular leakage in guinea pig. Eur J Pharmacol. 1992 Mar 31;213(3):367–373. doi: 10.1016/0014-2999(92)90625-e. [DOI] [PubMed] [Google Scholar]
  29. Salvemini D., Korbut R., Anggård E., Vane J. Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2593–2597. doi: 10.1073/pnas.87.7.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sybertz E. J., Watkins R. W., Baum T., Pula K., Rivelli M. Cardiac, coronary and peripheral vascular effects of acetyl glyceryl ether phosphoryl choline in the anesthetized dog. J Pharmacol Exp Ther. 1985 Jan;232(1):156–162. [PubMed] [Google Scholar]
  31. Szabó C., Mitchell J. A., Thiemermann C., Vane J. R. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol. 1993 Mar;108(3):786–792. doi: 10.1111/j.1476-5381.1993.tb12879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Szabó C., Wu C. C., Mitchell J. A., Gross S. S., Thiemermann C., Vane J. R. Platelet-activating factor contributes to the induction of nitric oxide synthase by bacterial lipopolysaccharide. Circ Res. 1993 Dec;73(6):991–999. doi: 10.1161/01.res.73.6.991. [DOI] [PubMed] [Google Scholar]
  33. Takekoshi K., Kasai K., Suzuki Y., Sekiguchi Y., Banba N., Nakamura T., Shimoda S. Effect of NG-nitro-L-arginine on shock induced by endotoxin and by platelet activating factor in dogs. Eur J Pharmacol. 1993 Dec 21;250(3):465–467. doi: 10.1016/0014-2999(93)90035-g. [DOI] [PubMed] [Google Scholar]
  34. Terashita Z., Kawamura M., Takatani M., Tsushima S., Imura Y., Nishikawa K. Beneficial effects of TCV-309, a novel potent and selective platelet activating factor antagonist in endotoxin and anaphylactic shock in rodents. J Pharmacol Exp Ther. 1992 Feb;260(2):748–755. [PubMed] [Google Scholar]
  35. Thiemermann C., Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol. 1990 Jul 17;182(3):591–595. doi: 10.1016/0014-2999(90)90062-b. [DOI] [PubMed] [Google Scholar]
  36. Weipert J., Hoffmann H., Siebeck M., Whalley E. T. Attenuation of arterial blood pressure fall in endotoxin shock in the rat using the competitive bradykinin antagonist Lys-Lys-[Hyp2, Thi5,8, DPhe7]-Bk (B4148). Br J Pharmacol. 1988 Jun;94(2):282–284. doi: 10.1111/j.1476-5381.1988.tb11526.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wilson D. D., de Garavilla L., Kuhn W., Togo J., Burch R. M., Steranka L. R. D-Arg-[Hyp3-D-Phe7]-bradykinin, a bradykinin antagonist, reduces mortality in a rat model of endotoxic shock. Circ Shock. 1989 Feb;27(2):93–101. [PubMed] [Google Scholar]
  38. Wirth K., Hock F. J., Albus U., Linz W., Alpermann H. G., Anagnostopoulos H., Henk S., Breipohl G., König W., Knolle J. Hoe 140 a new potent and long acting bradykinin-antagonist: in vivo studies. Br J Pharmacol. 1991 Mar;102(3):774–777. doi: 10.1111/j.1476-5381.1991.tb12249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamanaka S., Iwao H., Yukimura T., Kim S., Miura K. Effect of the platelet-activating factor antagonist, TCV-309, and the cyclo-oxygenase inhibitor, ibuprofen, on the haemodynamic changes in canine experimental endotoxic shock. Br J Pharmacol. 1993 Dec;110(4):1501–1507. doi: 10.1111/j.1476-5381.1993.tb13992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES