Abstract
1. To gain insight into the parameters which control vascular structure, we investigated the mechanisms whereby nifedipine, and other dihydropyridines, inhibit the growth of cultured fibroblasts isolated from the adventitia of the aorta of spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats. 2. The effects of nifedipine on cell proliferation and on serum-induced DNA synthesis were determined by measuring the cell number and the incorporation of [3H]-thymidine, respectively. The mechanism of action of nifedipine was studied by adding the drug either to randomly growing cells or to quiescent, G0/G1 arrested and synchronized cells. The effects of varying the duration of drug treatment were also examined. 3. In randomly growing cultures nifedipine, like other dihydropyridines concentration-dependently inhibited cell proliferation; the rank order of effect (measured at a concentration of 10 microM) was nifedipine > nisoldipine > nitrendipine approximately nimodipine. 4. In G0/G1 arrested cell cultures, nifedipine concentration-dependently inhibited serum-induced [3H]-thymidine incorporation. In this respect it had similar effects in cell cultures from WKY and SHR. In both SHR and WKY cultures, nifedipine delayed the transition from G0/G1 to S phase, and inhibited serum-induced DNA synthesis possibly by acting on the early G1 phase. 5. In cell cultures from both SHR and WKY, serum-induced DNA synthesis was similarly (approximately 40%) inhibited after a 1 day treatment with 10 microM nifedipine. In contrast, after 5 days treatment with the drug, the inhibition of DNA synthesis was approximately 65% and approximately 10% in SHR and WKY cultures, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berk B. C., Vallega G., Muslin A. J., Gordon H. M., Canessa M., Alexander R. W. Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+/H+ exchange. J Clin Invest. 1989 Mar;83(3):822–829. doi: 10.1172/JCI113964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Block L. H., Emmons L. R., Vogt E., Sachinidis A., Vetter W., Hoppe J. Ca2+-channel blockers inhibit the action of recombinant platelet-derived growth factor in vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2388–2392. doi: 10.1073/pnas.86.7.2388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukoski R. D., DeWan P., Bo J. Mechanism of the enhanced epidermal growth factor-induced growth response of genetically hypertensive vascular myocytes. Circ Res. 1991 Sep;69(3):757–764. doi: 10.1161/01.res.69.3.757. [DOI] [PubMed] [Google Scholar]
- Chen C. F., Corbley M. J., Roberts T. M., Hess P. Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science. 1988 Feb 26;239(4843):1024–1026. doi: 10.1126/science.2449730. [DOI] [PubMed] [Google Scholar]
- Deyl Z., Jelínek J., Macek K., Chaldakov G., Vankov V. N. Collagen and elastin synthesis in the aorta of spontaneously hypertensive rats. Blood Vessels. 1987;24(6):313–320. doi: 10.1159/000158708. [DOI] [PubMed] [Google Scholar]
- Dudkin S. M., Gnedoj S. N., Chernyuk N. N., Soldatov N. M. 1,4-Dihydropyridine receptor associated with Ca2+ channels in human embryonic fibroblasts. FEBS Lett. 1988 Jun 20;233(2):352–354. doi: 10.1016/0014-5793(88)80458-7. [DOI] [PubMed] [Google Scholar]
- Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982 Apr;62(2):347–504. doi: 10.1152/physrev.1982.62.2.347. [DOI] [PubMed] [Google Scholar]
- Hadrava V., Tremblay J., Hamet P. Abnormalities in growth characteristics of aortic smooth muscle cells in spontaneously hypertensive rats. Hypertension. 1989 Jun;13(6 Pt 1):589–597. doi: 10.1161/01.hyp.13.6.589. [DOI] [PubMed] [Google Scholar]
- Hadrava V., Tremblay J., Sekaly R. P., Hamet P. Accelerated entry of aortic smooth muscle cells from spontaneously hypertensive rats into the S phase of the cell cycle. Biochem Cell Biol. 1992 Jul;70(7):599–604. doi: 10.1139/o92-091. [DOI] [PubMed] [Google Scholar]
- Ishii K., Kano T., Ando J., Yoshida H. Binding of [3H]nitrendipine to cardiac and cerebral membranes from normotensive and renal, deoxycorticosterone/NaCl and spontaneously hypertensive rats. Eur J Pharmacol. 1986 Apr 16;123(2):271–278. doi: 10.1016/0014-2999(86)90668-0. [DOI] [PubMed] [Google Scholar]
- Jackson C. L., Schwartz S. M. Pharmacology of smooth muscle cell replication. Hypertension. 1992 Dec;20(6):713–736. doi: 10.1161/01.hyp.20.6.713. [DOI] [PubMed] [Google Scholar]
- Ko Y. D., Sachinidis A., Graack G. H., Appenheimer M., Wieczorek A. J., Düsing R., Vetter H. Inhibition of angiotensin II and platelet-derived growth factor-induced vascular smooth muscle cell proliferation by calcium entry blockers. Clin Investig. 1992 Feb;70(2):113–117. doi: 10.1007/BF00227350. [DOI] [PubMed] [Google Scholar]
- Kueng W., Silber E., Eppenberger U. Quantification of cells cultured on 96-well plates. Anal Biochem. 1989 Oct;182(1):16–19. doi: 10.1016/0003-2697(89)90710-0. [DOI] [PubMed] [Google Scholar]
- Lograno M. D., Daniele E., Vulpis V., Pirrelli A. Calcium channels in the vascular smooth muscle of spontaneously hypertensive rats. J Hypertens Suppl. 1993 Dec;11(5):S124–S125. [PubMed] [Google Scholar]
- Mulvany M. J., Hansen O. K., Aalkjaer C. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res. 1978 Dec;43(6):854–864. doi: 10.1161/01.res.43.6.854. [DOI] [PubMed] [Google Scholar]
- Nilsson J., Sjölund M., Palmberg L., Von Euler A. M., Jonzon B., Thyberg J. The calcium antagonist nifedipine inhibits arterial smooth muscle cell proliferation. Atherosclerosis. 1985 Dec;58(1-3):109–122. doi: 10.1016/0021-9150(85)90059-0. [DOI] [PubMed] [Google Scholar]
- Ooshima A., Fuller G. C., Cardinale G. J., Spector S., Udenfriend S. Increased collagen synthesis in blood vessels of hypertensive rats and its reversal by antihypertensive agents. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3019–3023. doi: 10.1073/pnas.71.8.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens G. K., Schwartz S. M. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circ Res. 1982 Sep;51(3):280–289. doi: 10.1161/01.res.51.3.280. [DOI] [PubMed] [Google Scholar]
- Rampe D., Caffrey J. M., Schneider M. D., Brown A. M. Control of expression of the 1,4-dihydropyridine receptor in BC3H1 cells. Biochem Biophys Res Commun. 1988 Apr 29;152(2):769–775. doi: 10.1016/s0006-291x(88)80104-9. [DOI] [PubMed] [Google Scholar]
- Roe M. W., Hepler J. R., Harden T. K., Herman B. Platelet-derived growth factor and angiotensin II cause increases in cytosolic free calcium by different mechanisms in vascular smooth muscle cells. J Cell Physiol. 1989 Apr;139(1):100–108. doi: 10.1002/jcp.1041390115. [DOI] [PubMed] [Google Scholar]
- Rusch N. J., Hermsmeyer K. Calcium currents are altered in the vascular muscle cell membrane of spontaneously hypertensive rats. Circ Res. 1988 Dec;63(6):997–1002. doi: 10.1161/01.res.63.6.997. [DOI] [PubMed] [Google Scholar]
- Saltis J., Bobik A. Vascular smooth muscle growth in genetic hypertension: evidence for multiple abnormalities in growth regulatory pathways. J Hypertens. 1992 Jul;10(7):635–643. [PubMed] [Google Scholar]
- Schwartz S. M., Heimark R. L., Majesky M. W. Developmental mechanisms underlying pathology of arteries. Physiol Rev. 1990 Oct;70(4):1177–1209. doi: 10.1152/physrev.1990.70.4.1177. [DOI] [PubMed] [Google Scholar]
- Scott-Burden T., Resink T. J., Bühler F. R. Enhanced growth and growth factor responsiveness of vascular smooth muscle cells from hypertensive rats. J Cardiovasc Pharmacol. 1989;14 (Suppl 6):S16–S21. [PubMed] [Google Scholar]
- Todd M. E. Hypertensive structural changes in blood vessels: do endothelial cells hold the key? Can J Physiol Pharmacol. 1992 Apr;70(4):536–551. doi: 10.1139/y92-069. [DOI] [PubMed] [Google Scholar]
- Uehara Y., Kawabata Y., Hirawa N., Takada S., Numabe A., Matsuoka H., Ikeda T., Takabatake Y., Yagi S., Sugimoto T. OPC-13340, a new dihydropyridine calcium channel blocker attenuates rapid vascular smooth muscle cell growth in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1992 Sep;20(3):408–415. doi: 10.1097/00005344-199209000-00010. [DOI] [PubMed] [Google Scholar]
- Venance S. L., Watson M. H., Wigle D. A., Mak A. S., Pang S. C. Differential expression and activity of p34cdc2 in cultured aortic adventitial fibroblasts derived from spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens. 1993 May;11(5):483–489. doi: 10.1097/00004872-199305000-00003. [DOI] [PubMed] [Google Scholar]
- Zernig G. Widening potential for Ca2+ antagonists: non-L-type Ca2+ channel interaction. Trends Pharmacol Sci. 1990 Jan;11(1):38–44. doi: 10.1016/0165-6147(90)90040-f. [DOI] [PubMed] [Google Scholar]
- Zhu D. L., Herembert T., Marche P. Increased proliferation of adventitial fibroblasts from spontaneously hypertensive rat aorta. J Hypertens. 1991 Dec;9(12):1161–1168. [PubMed] [Google Scholar]
- Zhu D. L., Herembert T., Marche P. Protein kinase C and cell proliferation in spontaneously hypertensive rats. Clin Exp Hypertens A. 1992;14(5):875–887. doi: 10.3109/10641969209036224. [DOI] [PubMed] [Google Scholar]
- Zhu D. L., Hérembert T., Caruelle D., Caruelle J. P., Marche P. Involvement of calcium channels in fibroblast growth factor-induced activation of arterial cells in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1994 Mar;23(3):395–400. [PubMed] [Google Scholar]
