Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Apr;114(8):1738–1744. doi: 10.1111/j.1476-5381.1995.tb14965.x

Actions of the novel neuroprotective agent, lifarizine (RS-87476), on voltage-dependent sodium currents in the neuroblastoma cell line, N1E-115.

J G McGivern 1, L Patmore 1, R D Sheridan 1
PMCID: PMC1510400  PMID: 7599943

Abstract

1. The actions of the neuroprotective agent, lifarizine (RS-87476-190), on voltage-dependent Na+ currents have been examined in the neuroblastoma cell line, N1E-115, using the whole-cell variant of the patch clamp technique. 2. At a holding potential of -80 mV, lifarizine reduced the peak Na+ current evoked by a 10 ms depolarizing step with an IC50 of 1.3 microM. At holding potentials of -100 and -60 mV the IC50 concentrations of lifarizine were 7.3 microM and 0.3 microM, respectively. 3. At a holding potential of -100 mV, most channels were in the resting state and the IC50 value for inhibition of Na+ current should correspond to the dissociation constant of lifarizine for resting channels (KR). KR was therefore estimated to be 7.3 microM. 4. In the absence of lifarizine, recovery from inactivation following a 20 s depolarization from -100 mV to 0 mV was complete within 2 s. However, in the presence of 3 microM lifarizine recovery took place in a biexponential fashion with time constants of 7 s and 79 s. 5. Lifarizine (1 microM) had no effect on steady-state inactivation curves when conditioning pre-pulses of 1 s duration were used. However, when pre-pulse durations of 1 min were used the curves were shifted to the left by lifarizine by about 10 mV. Analysis of the shifts induced by a range of lifarizine concentrations revealed that the apparent affinity of lifarizine for the inactivated state of the channel (K1) was 0.19 microM. 6. Lifarizine (1 microM) had no effect on chloramine-T-modified Na+ currents, suggesting no significant open channel interaction.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1738

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alps B. J. Drugs acting on calcium channels: potential treatment for ischaemic stroke. Br J Clin Pharmacol. 1992 Sep;34(3):199–206. doi: 10.1111/j.1365-2125.1992.tb04125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown C. M., Calder C., Alps B. J., Spedding M. The effect of lifarizine (RS-87476), a novel sodium and calcium channel modulator, on ischaemic dopamine depletion in the corpus striatum of the gerbil. Br J Pharmacol. 1993 May;109(1):175–177. doi: 10.1111/j.1476-5381.1993.tb13549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown N. A., Kemp J. A., Seabrook G. R. Block of human voltage-sensitive Na+ currents in differentiated SH-SY5Y cells by lifarizine. Br J Pharmacol. 1994 Oct;113(2):600–606. doi: 10.1111/j.1476-5381.1994.tb17032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  6. Hebert T., Drapeau P., Pradier L., Dunn R. J. Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol. 1994 May;45(5):1055–1060. [PubMed] [Google Scholar]
  7. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  9. Knight I. The development and applications of sucralose, a new high-intensity sweetener. Can J Physiol Pharmacol. 1994 Apr;72(4):435–439. doi: 10.1139/y94-063. [DOI] [PubMed] [Google Scholar]
  10. Kucharczyk J., Mintorovitch J., Moseley M. E., Asgari H. S., Sevick R. J., Derugin N., Norman D. Ischemic brain damage: reduction by sodium-calcium ion channel modulator RS-87476. Radiology. 1991 Apr;179(1):221–227. doi: 10.1148/radiology.179.1.2006281. [DOI] [PubMed] [Google Scholar]
  11. Lees K. R. Therapeutic interventions in acute stroke. Br J Clin Pharmacol. 1992 Dec;34(6):486–493. doi: 10.1111/j.1365-2125.1992.tb05655.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matsuki N., Quandt F. N., Ten Eick R. E., Yeh J. Z. Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Ther. 1984 Feb;228(2):523–530. [PubMed] [Google Scholar]
  13. Meeder T., Ulbricht W. Action of benzocaine on sodium channels of frog nodes of Ranvier treated with chloramine-T. Pflugers Arch. 1987 Jul;409(3):265–273. doi: 10.1007/BF00583475. [DOI] [PubMed] [Google Scholar]
  14. Miyamoto J., Hisatome I., Matsuoka S., Kosaka H., Kurata Y., Tanaka Y., Nawada T., Kotake H., Mashiba H., Sato R. The effect of TYB-3823, a new antiarrhythmic drug, on sodium current in isolated cardiac cells. Br J Pharmacol. 1991 Sep;104(1):25–30. doi: 10.1111/j.1476-5381.1991.tb12379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Niemann P., Schmidtmayer J., Ulbricht W. Chloramine-T effect on sodium conductance of neuroblastoma cells as studied by whole-cell clamp and single-channel analysis. Pflugers Arch. 1991 Mar;418(1-2):129–136. doi: 10.1007/BF00370461. [DOI] [PubMed] [Google Scholar]
  16. Prenen G. H., Go K. G., Postema F., Zuiderveen F., Korf J. Cerebral cation shifts in hypoxic-ischemic brain damage are prevented by the sodium channel blocker tetrodotoxin. Exp Neurol. 1988 Jan;99(1):118–132. doi: 10.1016/0014-4886(88)90132-x. [DOI] [PubMed] [Google Scholar]
  17. Quandt F. N. Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells. J Physiol. 1987 Nov;392:563–585. doi: 10.1113/jphysiol.1987.sp016797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rasool N., Faroqui M., Rubinstein E. H. Lidocaine accelerates neuroelectrical recovery after incomplete global ischemia in rabbits. Stroke. 1990 Jun;21(6):929–935. doi: 10.1161/01.str.21.6.929. [DOI] [PubMed] [Google Scholar]
  19. Shokunbi M. T., Gelb A. W., Wu X. M., Miller D. J. Continuous lidocaine infusion and focal feline cerebral ischemia. Stroke. 1990 Jan;21(1):107–111. doi: 10.1161/01.str.21.1.107. [DOI] [PubMed] [Google Scholar]
  20. Siesjö B. K. Historical overview. Calcium, ischemia, and death of brain cells. Ann N Y Acad Sci. 1988;522:638–661. doi: 10.1111/j.1749-6632.1988.tb33410.x. [DOI] [PubMed] [Google Scholar]
  21. Wang G. K., Wang S. Y. Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na+ channels. J Gen Physiol. 1992 Dec;100(6):1003–1020. doi: 10.1085/jgp.100.6.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yamasaki Y., Kogure K., Hara H., Ban H., Akaike N. The possible involvement of tetrodotoxin-sensitive ion channels in ischemic neuronal damage in the rat hippocampus. Neurosci Lett. 1991 Jan 2;121(1-2):251–254. doi: 10.1016/0304-3940(91)90697-r. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES