Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Nov;113(3):1050–1056. doi: 10.1111/j.1476-5381.1994.tb17099.x

Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption.

D T Thwaites 1, B H Hirst 1, N L Simmons 1
PMCID: PMC1510430  PMID: 7858848

Abstract

1. pH-dependent transepithelial transport and intracellular accumulation of the hydrolysis-resistant dipeptide glycylsarcosine (Gly-Sar) have been demonstrated in the model human intestinal epithelial cell line, Caco-2. 2. Experiments with BCECF (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein)-loaded Caco-2 cells demonstrated that dipeptide (Gly-Sar) transport across the apical membrane is coupled to proton flow into the cell. 3. A range of postulated substrates for the intestinal di/tripeptide carrier were tested for their abilities to: (a) inhibit pH-dependent [14C]Gly-Sar apical-to-basal transport and intracellular accumulation and (b) stimulate H+ flow across the apical surface of BCECF-loaded Caco-2 cell monolayers. 4. A range of compounds (including Gly-Gly, Leu-Leu, Gly-Gly-Gly, cefadroxil and cephalexin) caused marked acidification of intracellular pH when perfused at the apical surface of Caco-2 cell monolayers. In contrast leucine and D-Leu-D-Leu failed to induce proton flow. The ability to induce proton-flow across the apical surface by these compounds, in this intestinal epithelium, was directly correlated to the relative inhibitory effects on [14C]-Gly-Sar transport and accumulation. 5. The determination of substrate-induced intracellular pH change in the Caco-2 cell system may provide a useful rapid screen for candidate substrates for absorption via H(+)-coupled transport mechanisms such as the intestinal di/tripeptide carrier in an appropriate physiological context.

Full text

PDF
1050

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adibi S. A., Morse E. L. The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum. J Clin Invest. 1977 Nov;60(5):1008–1016. doi: 10.1172/JCI108851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergan T. Pharmacokinetics of beta-lactam antibiotics. Scand J Infect Dis Suppl. 1984;42:83–98. [PubMed] [Google Scholar]
  3. Blais A., Bissonnette P., Berteloot A. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J Membr Biol. 1987;99(2):113–125. doi: 10.1007/BF01871231. [DOI] [PubMed] [Google Scholar]
  4. Brandsch M., Miyamoto Y., Ganapathy V., Leibach F. H. Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line. Biochem J. 1994 Apr 1;299(Pt 1):253–260. doi: 10.1042/bj2990253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniel H., Morse E. L., Adibi S. A. Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. J Biol Chem. 1992 May 15;267(14):9565–9573. [PubMed] [Google Scholar]
  6. Dantzig A. H., Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim Biophys Acta. 1990 Sep 7;1027(3):211–217. doi: 10.1016/0005-2736(90)90309-c. [DOI] [PubMed] [Google Scholar]
  7. Fei Y. J., Kanai Y., Nussberger S., Ganapathy V., Leibach F. H., Romero M. F., Singh S. K., Boron W. F., Hediger M. A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994 Apr 7;368(6471):563–566. doi: 10.1038/368563a0. [DOI] [PubMed] [Google Scholar]
  8. Ganapathy, Leibach F. H. Is intestinal peptide transport energized by a proton gradient? Am J Physiol. 1985 Aug;249(2 Pt 1):G153–G160. doi: 10.1152/ajpgi.1985.249.2.G153. [DOI] [PubMed] [Google Scholar]
  9. Ganapathy V., Burckhardt G., Leibach F. H. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J Biol Chem. 1984 Jul 25;259(14):8954–8959. [PubMed] [Google Scholar]
  10. Hidalgo I. J., Borchardt R. T. Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2. Biochim Biophys Acta. 1990 Sep 21;1028(1):25–30. doi: 10.1016/0005-2736(90)90261-l. [DOI] [PubMed] [Google Scholar]
  11. Hidalgo I. J., Borchardt R. T. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim Biophys Acta. 1990 Jul 20;1035(1):97–103. doi: 10.1016/0304-4165(90)90179-z. [DOI] [PubMed] [Google Scholar]
  12. Inui K., Yamamoto M., Saito H. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1992 Apr;261(1):195–201. [PubMed] [Google Scholar]
  13. Lucas M. L., Cooper B. T., Lei F. H., Johnson I. T., Holmes G. K., Blair J. A., Cooke W. T. Acid microclimate in coeliac and Crohn's disease: a model for folate malabsorption. Gut. 1978 Aug;19(8):735–742. doi: 10.1136/gut.19.8.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mathews D. M., Adibi S. A. Peptide absorption. Gastroenterology. 1976 Jul;71(1):151–161. [PubMed] [Google Scholar]
  15. Matthews D. M., Burston D. Uptake of L-leucyl-L-leucine and glycylsarcosine by hamster jejunum in vitro. Clin Sci (Lond) 1983 Aug;65(2):177–184. doi: 10.1042/cs0650177. [DOI] [PubMed] [Google Scholar]
  16. Okano T., Inui K., Maegawa H., Takano M., Hori R. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. J Biol Chem. 1986 Oct 25;261(30):14130–14134. [PubMed] [Google Scholar]
  17. Okano T., Inui K., Takano M., Hori R. H+ gradient-dependent transport of aminocephalosporins in rat intestinal brush-border membrane vesicles. Role of dipeptide transport system. Biochem Pharmacol. 1986 Jun 1;35(11):1781–1786. doi: 10.1016/0006-2952(86)90292-3. [DOI] [PubMed] [Google Scholar]
  18. Rawlings J. M., Lucas M. L., Russell R. I. Measurement of jejunal surface pH in situ by plastic pH electrode in patients with coeliac disease. Scand J Gastroenterol. 1987 Apr;22(3):377–384. doi: 10.3109/00365528709078608. [DOI] [PubMed] [Google Scholar]
  19. Roisin M. P., Isambert M. F., Henry J. P., Guillot M., Lenoir G. Characterization of the monoamine uptake system in catecholamine storage vesicles isolated from a pheochromocytoma taken from a child. Biochem Pharmacol. 1984 Jul 15;33(14):2245–2252. doi: 10.1016/0006-2952(84)90662-2. [DOI] [PubMed] [Google Scholar]
  20. Saito H., Inui K. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. Am J Physiol. 1993 Aug;265(2 Pt 1):G289–G294. doi: 10.1152/ajpgi.1993.265.2.G289. [DOI] [PubMed] [Google Scholar]
  21. Sleisenger M. H., Burston D., Dalrymple J. A., Wilkinson S., Mathews D. M. Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Gastroenterology. 1976 Jul;71(1):76–81. [PubMed] [Google Scholar]
  22. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics. Biochim Biophys Acta. 1993 Sep 19;1151(2):237–245. doi: 10.1016/0005-2736(93)90108-c. [DOI] [PubMed] [Google Scholar]
  23. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. J Biol Chem. 1993 Apr 15;268(11):7640–7642. [PubMed] [Google Scholar]
  24. Thwaites D. T., Hirst B. H., Simmons N. L. Direct assessment of dipeptide/H+ symport in intact human intestinal (Caco-2) epithelium: a novel method utilising continuous intracellular pH measurement. Biochem Biophys Res Commun. 1993 Jul 15;194(1):432–438. doi: 10.1006/bbrc.1993.1838. [DOI] [PubMed] [Google Scholar]
  25. Thwaites D. T., McEwan G. T., Brown C. D., Hirst B. H., Simmons N. L. L-alanine absorption in human intestinal Caco-2 cells driven by the proton electrochemical gradient. J Membr Biol. 1994 Jun;140(2):143–151. doi: 10.1007/BF00232902. [DOI] [PubMed] [Google Scholar]
  26. Thwaites D. T., Simmons N. L., Hirst B. H. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport. Pharm Res. 1993 May;10(5):667–673. doi: 10.1023/a:1018995313180. [DOI] [PubMed] [Google Scholar]
  27. Watson A. J., Levine S., Donowitz M., Montrose M. H. Kinetics and regulation of a polarized Na(+)-H+ exchanger from Caco-2 cells, a human intestinal cell line. Am J Physiol. 1991 Aug;261(2 Pt 1):G229–G238. doi: 10.1152/ajpgi.1991.261.2.G229. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES