Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Nov;113(3):917–925. doi: 10.1111/j.1476-5381.1994.tb17080.x

Regulation of nicotinic receptors in rat brain following quasi-irreversible nicotinic blockade by chlorisondamine and chronic treatment with nicotine.

H el-Bizri 1, P B Clarke 1
PMCID: PMC1510460  PMID: 7858886

Abstract

1. Chronic administration of nicotinic agonists in vivo increases the density of brain nicotinic binding sites. It has been proposed that this up-regulation results from agonist-induced functional blockade of nicotinic receptors. This hypothesis was tested by examining post mortem [3H]-nicotine and [125I]-alpha-bungarotoxin ([125I]-alpha BTX) binding following treatment in vivo with the quasi-irreversible and insurmountable CNS nicotinic blocker chlorisondamine, given either alone or in combination with chronic nicotine administration. 2. In rats that had not received chlorisondamine pretreatment, chronic nicotine administration (0.6 mg kg-1 s.c., twice daily for 12 days) increased [3H]-nicotine binding density (Bmax) in forebrain tissue sections by 19%, with no change in the apparent dissociation constant (KD). Chlorisondamine (10 mg kg-1, s.c.), given once prior to the chronic treatment phase, neither increased [3H]-nicotine binding by itself, nor altered the extent of nicotine-induced up-regulation. Nevertheless, chlorisondamine pretreatment resulted in a persistent blockade of CNS nicotinic receptors, as demonstrated by complete block of acute locomotor responses to nicotine. 3. In a second experiment, [3H]-nicotine and [125I]-alpha BTX binding was measured in tissue homogenates prepared from several brain regions. In the absence of chlorisondamine pretreatment, chronic nicotine administration (1 mg kg-1 s.c., twice daily for 12 days) increased the Bmax of [3H]-nicotine binding in the cerebral cortex (by 34%), striatum (by 28%), midbrain (by 16%) and hippocampus (by 36%); KD was unchanged. As before, this up-regulation was neither mimicked nor blocked by chlorisondamine pretreatment (10 mg kg-1, s.c., given twice), despite persistent blockade of acute locomotor responses to nicotine.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
917

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benwell M. E., Balfour D. J., Anderson J. M. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem. 1988 Apr;50(4):1243–1247. doi: 10.1111/j.1471-4159.1988.tb10600.x. [DOI] [PubMed] [Google Scholar]
  2. Brioni J. D., O'Neill A. B., Kim D. J., Decker M. W. Nicotinic receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol. 1993 Jul 6;238(1):1–8. doi: 10.1016/0014-2999(93)90498-7. [DOI] [PubMed] [Google Scholar]
  3. Clarke P. B., Chaudieu I., el-Bizri H., Boksa P., Quik M., Esplin B. A., Capek R. The pharmacology of the nicotinic antagonist, chlorisondamine, investigated in rat brain and autonomic ganglion. Br J Pharmacol. 1994 Feb;111(2):397–405. doi: 10.1111/j.1476-5381.1994.tb14748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clarke P. B. Chronic central nicotinic blockade after a single administration of the bisquaternary ganglion-blocking drug chlorisondamine. Br J Pharmacol. 1984 Oct;83(2):527–535. doi: 10.1111/j.1476-5381.1984.tb16517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke P. B., Kumar R. Characterization of the locomotor stimulant action of nicotine in tolerant rats. Br J Pharmacol. 1983 Nov;80(3):587–594. doi: 10.1111/j.1476-5381.1983.tb10733.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke P. B., Pert C. B., Pert A. Autoradiographic distribution of nicotine receptors in rat brain. Brain Res. 1984 Dec 10;323(2):390–395. doi: 10.1016/0006-8993(84)90320-2. [DOI] [PubMed] [Google Scholar]
  7. Clarke P. B., Schwartz R. D., Paul S. M., Pert C. B., Pert A. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci. 1985 May;5(5):1307–1315. doi: 10.1523/JNEUROSCI.05-05-01307.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins A. C., Bhat R. V., Pauly J. R., Marks M. J. Modulation of nicotine receptors by chronic exposure to nicotinic agonists and antagonists. Ciba Found Symp. 1990;152:68–86. doi: 10.1002/9780470513965.ch5. [DOI] [PubMed] [Google Scholar]
  9. Collins A. C., Romm E., Wehner J. M. Dissociation of the apparent relationship between nicotine tolerance and up-regulation of nicotinic receptors. Brain Res Bull. 1990 Sep;25(3):373–379. doi: 10.1016/0361-9230(90)90222-l. [DOI] [PubMed] [Google Scholar]
  10. Corrigall W. A., Franklin K. B., Coen K. M., Clarke P. B. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992;107(2-3):285–289. doi: 10.1007/BF02245149. [DOI] [PubMed] [Google Scholar]
  11. Creese I., Sibley D. R. Receptor adaptations to centrally acting drugs. Annu Rev Pharmacol Toxicol. 1981;21:357–391. doi: 10.1146/annurev.pa.21.040181.002041. [DOI] [PubMed] [Google Scholar]
  12. Decker M. W., Majchrzak M. J. Effects of central nicotinic cholinergic receptor blockade produced by chlorisondamine on learning and memory performance in rats. Behav Neural Biol. 1993 Sep;60(2):163–171. doi: 10.1016/0163-1047(93)90271-i. [DOI] [PubMed] [Google Scholar]
  13. Fudala P. J., Iwamoto E. T. Conditioned aversion after delay place conditioning with nicotine. Psychopharmacology (Berl) 1987;92(3):376–381. doi: 10.1007/BF00210847. [DOI] [PubMed] [Google Scholar]
  14. Grady S., Marks M. J., Wonnacott S., Collins A. C. Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem. 1992 Sep;59(3):848–856. doi: 10.1111/j.1471-4159.1992.tb08322.x. [DOI] [PubMed] [Google Scholar]
  15. Izenwasser S., Jacocks H. M., Rosenberger J. G., Cox B. M. Nicotine indirectly inhibits [3H]dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J Neurochem. 1991 Feb;56(2):603–610. doi: 10.1111/j.1471-4159.1991.tb08192.x. [DOI] [PubMed] [Google Scholar]
  16. Kumar R., Reavill C., Stolerman I. P. Nicotine cue in rats: effects of central administration of ganglion-blocking drugs. Br J Pharmacol. 1987 Jan;90(1):239–246. doi: 10.1111/j.1476-5381.1987.tb16845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lapchak P. A., Araujo D. M., Quirion R., Collier B. Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamylcholine binding sites in the rat brain. J Neurochem. 1989 Feb;52(2):483–491. doi: 10.1111/j.1471-4159.1989.tb09146.x. [DOI] [PubMed] [Google Scholar]
  18. London E. D., Fanelli R. J., Kimes A. S., Moses R. L. Effects of chronic nicotine on cerebral glucose utilization in the rat. Brain Res. 1990 Jun 18;520(1-2):208–214. doi: 10.1016/0006-8993(90)91707-n. [DOI] [PubMed] [Google Scholar]
  19. Marks M. J., Burch J. B., Collins A. C. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther. 1983 Sep;226(3):817–825. [PubMed] [Google Scholar]
  20. Marks M. J., Collins A. C. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate. Mol Pharmacol. 1982 Nov;22(3):554–564. [PubMed] [Google Scholar]
  21. Marks M. J., Farnham D. A., Grady S. R., Collins A. C. Nicotinic receptor function determined by stimulation of rubidium efflux from mouse brain synaptosomes. J Pharmacol Exp Ther. 1993 Feb;264(2):542–552. [PubMed] [Google Scholar]
  22. Marks M. J., Stitzel J. A., Romm E., Wehner J. M., Collins A. C. Nicotinic binding sites in rat and mouse brain: comparison of acetylcholine, nicotine, and alpha-bungarotoxin. Mol Pharmacol. 1986 Nov;30(5):427–436. [PubMed] [Google Scholar]
  23. Morley B. J. Alpha-bungarotoxin receptors in the CNS. Prog Brain Res. 1989;79:101–108. doi: 10.1016/s0079-6123(08)62469-3. [DOI] [PubMed] [Google Scholar]
  24. Morrow A. L., Loy R., Creese I. Alteration of nicotinic cholinergic agonist binding sites in hippocampus after fimbria transection. Brain Res. 1985 May 20;334(2):309–314. doi: 10.1016/0006-8993(85)90223-9. [DOI] [PubMed] [Google Scholar]
  25. Mundy W. R., Iwamoto E. T. Actions of nicotine on the acquisition of an autoshaped lever-touch response in rats. Psychopharmacology (Berl) 1988;94(2):267–274. doi: 10.1007/BF00176858. [DOI] [PubMed] [Google Scholar]
  26. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  27. Reavill C., Stolerman I. P., Kumar R., Garcha H. S. Chlorisondamine blocks acquisition of the conditioned taste aversion produced by (-)-nicotine. Neuropharmacology. 1986 Sep;25(9):1067–1069. doi: 10.1016/0028-3908(86)90204-2. [DOI] [PubMed] [Google Scholar]
  28. Romm E., Lippiello P. M., Marks M. J., Collins A. C. Purification of L-[3H]nicotine eliminates low affinity binding. Life Sci. 1990;46(13):935–943. doi: 10.1016/0024-3205(90)90095-9. [DOI] [PubMed] [Google Scholar]
  29. Rowell P. P., Wonnacott S. Evidence for functional activity of up-regulated nicotine binding sites in rat striatal synaptosomes. J Neurochem. 1990 Dec;55(6):2105–2110. doi: 10.1111/j.1471-4159.1990.tb05802.x. [DOI] [PubMed] [Google Scholar]
  30. Sanderson E. M., Drasdo A. L., McCrea K., Wonnacott S. Upregulation of nicotinic receptors following continuous infusion of nicotine is brain-region-specific. Brain Res. 1993 Jul 23;617(2):349–352. doi: 10.1016/0006-8993(93)91104-z. [DOI] [PubMed] [Google Scholar]
  31. Schwartz R. D., Kellar K. J. In vivo regulation of [3H]acetylcholine recognition sites in brain by nicotinic cholinergic drugs. J Neurochem. 1985 Aug;45(2):427–433. doi: 10.1111/j.1471-4159.1985.tb04005.x. [DOI] [PubMed] [Google Scholar]
  32. Schwartz R. D., Kellar K. J. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science. 1983 Apr 8;220(4593):214–216. doi: 10.1126/science.6828889. [DOI] [PubMed] [Google Scholar]
  33. Schwartz R. D., McGee R., Jr, Kellar K. J. Nicotinic cholinergic receptors labeled by [3H]acetylcholine in rat brain. Mol Pharmacol. 1982 Jul;22(1):56–62. [PubMed] [Google Scholar]
  34. Snell L. D., Johnson K. M. Effects of nicotinic agonists and antagonists on N-methyl-D-aspartate-induced 3H-norepinephrine release and 3H-(1-[1-(2-thienyl)cyclohexyl]-piperidine) binding in rat hippocampus. Synapse. 1989;3(2):129–135. doi: 10.1002/syn.890030204. [DOI] [PubMed] [Google Scholar]
  35. Stolerman I. P. Behavioural pharmacology of nicotine: implications for multiple brain nicotinic receptors. Ciba Found Symp. 1990;152:3–22. doi: 10.1002/9780470513965.ch2. [DOI] [PubMed] [Google Scholar]
  36. Wonnacott S. Neuronal nicotinic receptors: functional correlates of ligand binding sites. Biochem Soc Trans. 1991 Feb;19(1):121–124. doi: 10.1042/bst0190121. [DOI] [PubMed] [Google Scholar]
  37. el-Bizri H., Clarke P. B. Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine administered in vivo. Br J Pharmacol. 1994 Feb;111(2):414–418. doi: 10.1111/j.1476-5381.1994.tb14750.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. el-Bizri H., Clarke P. B. Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine and other nicotinic antagonists administered in vitro. Br J Pharmacol. 1994 Feb;111(2):406–413. doi: 10.1111/j.1476-5381.1994.tb14749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES