Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Dec;113(4):1554–1560. doi: 10.1111/j.1476-5381.1994.tb17173.x

Endogenous expression of histamine H1 receptors functionally coupled to phosphoinositide hydrolysis in C6 glioma cells: regulation by cyclic AMP.

M C Peakman 1, S J Hill 1
PMCID: PMC1510483  PMID: 7889313

Abstract

1. The effects of histamine receptor agonists and antagonists on phospholipid hydrolysis in rat-derived C6 glioma cells have been investigated. 2. Histamine H1 receptor-stimulation caused a concentration-dependent increase in the accumulation of total [3H]-inositol phosphates in cells prelabelled with [3H]-myo-inositol. The rank order of agonist potencies was histamine (EC50 = 24 microM) > N alpha-methylhistamine (EC50 = 31 microM) > 2-thiazolylethylamine (EC50 = 91 microM). 3. The response to 0.1 mM histamine was antagonized in a concentration-dependent manner by the H1-antagonists, mepyramine (apparent Kd = 1 nM) and (+)-chlorpheniramine (apparent Kd = 4 nM). In addition, (-)-chlorpheniramine was more than two orders of magnitude less potent than its (+)-stereoisomer. 4. Elevation of intracellular cyclic AMP accumulation with forskolin (10 microM, EC50 = 0.3 microM), isoprenaline (1 microM, EC50 = 4 nM) or rolipram (0.5 mM), significantly reduced the histamine-mediated (0.1 mM) inositol phosphate response by 37%, 43% and 26% respectively. In contrast, 1,9-dideoxyforskolin did not increase cyclic AMP accumulation and had no effect on the phosphoinositide response to histamine. 5. These data indicate the presence of functionally coupled, endogenous histamine H1 receptors in C6 glioma cells. Furthermore, the results also indicate that H1 receptor-mediated phospholipid hydrolysis is inhibited by the elevation of cyclic AMP levels in these cells.

Full text

PDF
1554

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander S. P., Kendall D. A., Hill S. J. Differences in the adenosine receptors modulating inositol phosphates and cyclic AMP accumulation in mammalian cerebral cortex. Br J Pharmacol. 1989 Dec;98(4):1241–1248. doi: 10.1111/j.1476-5381.1989.tb12670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ananth U. S., Leli U., Hauser G. Stimulation of phosphoinositide hydrolysis by serotonin in C6 glioma cells. J Neurochem. 1987 Jan;48(1):253–261. doi: 10.1111/j.1471-4159.1987.tb13156.x. [DOI] [PubMed] [Google Scholar]
  3. Arbonés L., Picatoste F., García A. Histamine H1-receptors mediate phosphoinositide hydrolysis in astrocyte-enriched primary cultures. Brain Res. 1988 May 31;450(1-2):144–152. doi: 10.1016/0006-8993(88)91554-5. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bristow D. R., Arias-Montaño J. A., Young J. M. Histamine-induced inositol phosphate accumulation in HeLa cells: lithium sensitivity. Br J Pharmacol. 1991 Nov;104(3):677–684. doi: 10.1111/j.1476-5381.1991.tb12488.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  7. DeGeorge J. J., Ousley A. H., McCarthy K. D., Lapetina E. G., Morell P. Acetylcholine stimulates selective liberation and re-esterification of arachidonate and accumulation of inositol phosphates and glycerophosphoinositol in C62B glioma cells. J Biol Chem. 1987 Jun 15;262(17):8077–8083. [PubMed] [Google Scholar]
  8. Dickenson J. M., Hill S. J. Characteristics of [3H]mepyramine binding in DDT1MF-2 cells: evidence for high affinity binding to a functional histamine H1 receptor. Eur J Pharmacol. 1994 Jul 15;268(2):257–262. doi: 10.1016/0922-4106(94)90196-1. [DOI] [PubMed] [Google Scholar]
  9. Dickenson J. M., White T. E., Hill S. J. The effects of elevated cyclic AMP levels on histamine-H1-receptor-stimulated inositol phospholipid hydrolysis and calcium mobilization in the smooth-muscle cell line DDT1MF-2. Biochem J. 1993 Jun 1;292(Pt 2):409–417. doi: 10.1042/bj2920409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donaldson J., Brown A. M., Hill S. J. Influence of rolipram on the cyclic 3',5'-adenosine monophosphate response to histamine and adenosine in slices of guinea-pig cerebral cortex. Biochem Pharmacol. 1988 Feb 15;37(4):715–723. doi: 10.1016/0006-2952(88)90146-3. [DOI] [PubMed] [Google Scholar]
  11. Donié F., Reiser G. Mass measurements of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in a neuronal cell line stimulated with bradykinin: inositolphosphate response shows desensitization. Biochem Biophys Res Commun. 1991 Dec 31;181(3):997–1003. doi: 10.1016/0006-291x(91)92035-i. [DOI] [PubMed] [Google Scholar]
  12. Fujimoto K., Horio Y., Sugama K., Ito S., Liu Y. Q., Fukui H. Genomic cloning of the rat histamine H1 receptor. Biochem Biophys Res Commun. 1993 Jan 15;190(1):294–301. doi: 10.1006/bbrc.1993.1045. [DOI] [PubMed] [Google Scholar]
  13. Fukui H., Inagaki N., Ito S., Kubo A., Kondoh H., Yamatodani A., Wada H. Histamine H1-receptors on astrocytes in primary cultures: a possible target for histaminergic neurones. Agents Actions Suppl. 1991;33:161–180. doi: 10.1007/978-3-0348-7309-3_12. [DOI] [PubMed] [Google Scholar]
  14. Guillon G., Gallo-Payet N., Balestre M. N., Lombard C. Cholera-toxin and corticotropin modulation of inositol phosphate accumulation induced by vasopressin and angiotensin II in rat glomerulosa cells. Biochem J. 1988 Aug 1;253(3):765–775. doi: 10.1042/bj2530765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gusovsky F. Endothelin-elicited stimulation of phospholipase C is mediated by guanine nucleotide binding protein(s). Eur J Pharmacol. 1992 Apr 10;225(4):339–345. doi: 10.1016/0922-4106(92)90108-8. [DOI] [PubMed] [Google Scholar]
  16. Hall I. P., Donaldson J., Hill S. J. Inhibition of histamine-stimulated inositol phospholipid hydrolysis by agents which increase cyclic AMP levels in bovine tracheal smooth muscle. Br J Pharmacol. 1989 Jun;97(2):603–613. doi: 10.1111/j.1476-5381.1989.tb11992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hall I. P., Donaldson J., Hill S. J. Modulation of fluoroaluminate-induced inositol phosphate formation by increases in tissue cyclic AMP content in bovine tracheal smooth muscle. Br J Pharmacol. 1990 Jul;100(3):646–650. doi: 10.1111/j.1476-5381.1990.tb15861.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hall I. P., Hill S. J. Beta-adrenoceptor stimulation inhibits histamine-stimulated inositol phospholipid hydrolysis in bovine tracheal smooth muscle. Br J Pharmacol. 1988 Dec;95(4):1204–1212. doi: 10.1111/j.1476-5381.1988.tb11757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hill S. J., Daum P., Young J. M. Affinities of histamine H1-antagonists in guinea pig brain: similarity of values determined from [3H]mepyramine binding and from inhibition of a functional response. J Neurochem. 1981 Nov;37(5):1357–1360. doi: 10.1111/j.1471-4159.1981.tb04692.x. [DOI] [PubMed] [Google Scholar]
  20. Hill S. J. Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev. 1990 Mar;42(1):45–83. [PubMed] [Google Scholar]
  21. Hill S. J. Histamine receptors and interactions between second messenger transduction systems. Agents Actions Suppl. 1991;33:145–159. doi: 10.1007/978-3-0348-7309-3_11. [DOI] [PubMed] [Google Scholar]
  22. Hill S. J. Multiple histamine receptors: properties and functional characteristics. Biochem Soc Trans. 1992 Feb;20(1):122–125. doi: 10.1042/bst0200122. [DOI] [PubMed] [Google Scholar]
  23. Hollingsworth E. B., Daly J. W. Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamylcholine and 2-chloroadenosine. Biochim Biophys Acta. 1985 Nov 20;847(2):207–216. doi: 10.1016/0167-4889(85)90022-9. [DOI] [PubMed] [Google Scholar]
  24. Hösli E., Hösli L. Autoradiographic localization of binding sites for [3H]histamine and H1- and H2-antagonists on cultured neurones and glial cells. Neuroscience. 1984 Nov;13(3):863–870. doi: 10.1016/0306-4522(84)90101-5. [DOI] [PubMed] [Google Scholar]
  25. Inagaki N., Fukui H., Ito S., Wada H. Type-2 astrocytes show intracellular Ca2+ elevation in response to various neuroactive substances. Neurosci Lett. 1991 Jul 22;128(2):257–260. doi: 10.1016/0304-3940(91)90274-w. [DOI] [PubMed] [Google Scholar]
  26. Inagaki N., Fukui H., Ito S., Yamatodani A., Wada H. Single type-2 astrocytes show multiple independent sites of Ca2+ signaling in response to histamine. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4215–4219. doi: 10.1073/pnas.88.10.4215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Inagaki N., Fukui H., Taguchi Y., Wang N. P., Yamatodani A., Wada H. Characterization of histamine H1-receptors on astrocytes in primary culture: [3H]mepyramine binding studies. Eur J Pharmacol. 1989 Nov 28;173(1):43–51. doi: 10.1016/0014-2999(89)90007-1. [DOI] [PubMed] [Google Scholar]
  28. Kemp B. E., Graves D. J., Benjamini E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):4888–4894. [PubMed] [Google Scholar]
  29. Kennelly P. J., Krebs E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed] [Google Scholar]
  30. Kitanaka J., Hashimoto H., Gotoh M., Mayumi T., Baba A. Mechanism of extracellular ATP-stimulated phosphoinositide hydrolysis in rat glioma C6 cells. J Pharmacol Exp Ther. 1992 Dec;263(3):1248–1252. [PubMed] [Google Scholar]
  31. Kondou H., Inagaki N., Fukui H., Koyama Y., Kanamura A., Wada H. Histamine-induced inositol phosphate accumulation in type-2 astrocytes. Biochem Biophys Res Commun. 1991 Jun 14;177(2):734–738. doi: 10.1016/0006-291x(91)91849-8. [DOI] [PubMed] [Google Scholar]
  32. Lechleiter J., Hellmiss R., Duerson K., Ennulat D., David N., Clapham D., Peralta E. Distinct sequence elements control the specificity of G protein activation by muscarinic acetylcholine receptor subtypes. EMBO J. 1990 Dec;9(13):4381–4390. doi: 10.1002/j.1460-2075.1990.tb07888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lin W. W., Kiang J. G., Chuang D. M. Pharmacological characterization of endothelin-stimulated phosphoinositide breakdown and cytosolic free Ca2+ rise in rat C6 glioma cells. J Neurosci. 1992 Mar;12(3):1077–1085. doi: 10.1523/JNEUROSCI.12-03-01077.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Liu Y. Q., Horio Y., Mizuguchi H., Fujimoto K., Imamura I., Abe Y., Fukui H. Re-examination of [3H]mepyramine binding assay for histamine H1 receptor using quinine. Biochem Biophys Res Commun. 1992 Nov 30;189(1):378–384. doi: 10.1016/0006-291x(92)91569-c. [DOI] [PubMed] [Google Scholar]
  35. Mangoura D., Sakellaridis N., Jones J., Vernadakis A. Early and late passage C-6 glial cell growth: similarities with primary glial cells in culture. Neurochem Res. 1989 Oct;14(10):941–947. doi: 10.1007/BF00965927. [DOI] [PubMed] [Google Scholar]
  36. Peakman M. C., Hill S. J. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br J Pharmacol. 1994 Jan;111(1):191–198. doi: 10.1111/j.1476-5381.1994.tb14043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. ROTH F. E., GOVIER W. M. Comparative pharmacology of chlorpheniramine (Chlor-Trimeton) and its optical isomers. J Pharmacol Exp Ther. 1958 Dec;124(4):347–349. [PubMed] [Google Scholar]
  38. Raff M. C., Abney E. R., Cohen J., Lindsay R., Noble M. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci. 1983 Jun;3(6):1289–1300. doi: 10.1523/JNEUROSCI.03-06-01289.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
  40. Tachado S. D., Akhtar R. A., Zhou C. J., Abdel-Latif A. A. Effects of isoproterenol and forskolin on carbachol- and fluoroaluminate-induced polyphosphoinositide hydrolysis, inositol trisphosphate production, and contraction in bovine iris sphincter smooth muscle: interaction between cAMP and IP3 second messenger systems. Cell Signal. 1992 Jan;4(1):61–75. doi: 10.1016/0898-6568(92)90008-v. [DOI] [PubMed] [Google Scholar]
  41. Thompson A. K., Fisher S. K. Relationship between agonist-induced muscarinic receptor loss and desensitization of stimulated phosphoinositide turnover in two neuroblastomas: methodological considerations. J Pharmacol Exp Ther. 1990 Feb;252(2):744–752. [PubMed] [Google Scholar]
  42. Wess J., Bonner T. I., Dörje F., Brann M. R. Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucleotide-binding proteins and second messengers. Mol Pharmacol. 1990 Oct;38(4):517–523. [PubMed] [Google Scholar]
  43. White T. E., Dickenson J. M., Hill S. J. Histamine H1-receptor-mediated inositol phospholipid hydrolysis in DDT1MF-2 cells: agonist and antagonist properties. Br J Pharmacol. 1993 Jan;108(1):196–203. doi: 10.1111/j.1476-5381.1993.tb13462.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yada Y., Nagao S., Okano Y., Nozawa Y. Inhibition by cyclic AMP of guanine nucleotide-induced activation of phosphoinositide-specific phospholipase C in human platelets. FEBS Lett. 1989 Jan 2;242(2):368–372. doi: 10.1016/0014-5793(89)80503-4. [DOI] [PubMed] [Google Scholar]
  45. Zetterqvist O., Ragnarsson U., Humble E., Berglund L., Engström L. The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem Biophys Res Commun. 1976 Jun 7;70(3):696–703. doi: 10.1016/0006-291x(76)90648-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES