Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Dec;113(4):1494–1500. doi: 10.1111/j.1476-5381.1994.tb17165.x

Variable potency of nitrergic-nitrovasodilator relaxations of the mouse anococcygeus against different forms of induced tone.

A Gibson 1, I McFadzean 1, J F Tucker 1, C Wayman 1
PMCID: PMC1510500  PMID: 7889307

Abstract

1. U46619 (thromboxane A2 receptors; 0.002-1 microM), carbachol (muscarinic M3 receptors; 0.1-100 microM), cyclopiazonic acid (CPA; Ca(2+)-ATPase inhibitor; 0.1-30 microM) and K+ (5-100 mM) produced concentration-dependent contractions of the mouse isolated anococcygeus muscle. Equi-effective, submaximal concentrations of each agent were used in further experiments (40 nM U46619; 5 microM carbachol; 5 microM CPA; 70 mM K+). 2. Nifedipine (1 microM) totally abolished contractile responses to K+; those to U46619, carbachol and CPA were reduced by only 20-30% in the presence of nifedipine, but were greatly reduced (> 90%) by a combination of nifedipine and SKF 96365 (0.1-40 microM). 3. In Ca(2+)-free medium, contractions to K+ and CPA were abolished. Small residual responses remained to both carbachol and U46619; those to carbachol were transient, could not be repeated in the continued absence of Ca2+ and were prevented by pre-incubation with CPA, but unaffected by SKF 96365; those to U46619 were sustained, could be repeated in the absence of Ca2+, and were resistant to CPA and SKF 96365. 4. Tone induced by all four agents could be relaxed by sodium nitroprusside (SNP), but with a clear order of potency. SNP (pIC40) was most effective against U46619 (7.92), less so against carbachol (6.80) and CPA (6.68), and least potent against K+ (5.94). A similar order of potency was observed with 8Br-cyclic GMP (50 microM) and nitrergic field stimulation (1-20 Hz). 5. The relaxant potency of SNP was similar in normal Krebs solution and in high K+ (70 mM) Krebs containing 1 microM nifedipine.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1494

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar R. A., Abdel-Latif A. A. The effect of M & B 22948 on carbachol-induced inositol trisphosphate accumulation and contraction in iris sphincter smooth muscle. Eur J Pharmacol. 1991 Apr 25;206(4):291–295. doi: 10.1016/0922-4106(91)90112-u. [DOI] [PubMed] [Google Scholar]
  2. Bourreau J. P., Kwan C. Y., Daniel E. E. Distinct pathways to refill ACh-sensitive internal Ca2+ stores in canine airway smooth muscle. Am J Physiol. 1993 Jul;265(1 Pt 1):C28–C35. doi: 10.1152/ajpcell.1993.265.1.C28. [DOI] [PubMed] [Google Scholar]
  3. Brave S. R., Tucker J. F., Gibson A., Bishop A. E., Riveros-Moreno V., Moncada S., Polak J. M. Localisation of nitric oxide synthase within non-adrenergic, non-cholinergic nerves in the mouse anococcygeus. Neurosci Lett. 1993 Oct 14;161(1):93–96. doi: 10.1016/0304-3940(93)90148-e. [DOI] [PubMed] [Google Scholar]
  4. Byrne N. G., Large W. A. Membrane mechanism associated with muscarinic receptor activation in single cells freshly dispersed from the rat anococcygeus muscle. Br J Pharmacol. 1987 Oct;92(2):371–379. doi: 10.1111/j.1476-5381.1987.tb11333.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chilvers E. R., Giembycz M. A., Challiss R. A., Barnes B. J., Nahorski S. R. Lack of effect of zaprinast on methacholine-induced contraction and inositol 1,4,5-trisphosphate accumulation in bovine tracheal smooth muscle. Br J Pharmacol. 1991 May;103(1):1119–1125. doi: 10.1111/j.1476-5381.1991.tb12310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornwell T. L., Pryzwansky K. B., Wyatt T. A., Lincoln T. M. Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol. 1991 Dec;40(6):923–931. [PubMed] [Google Scholar]
  7. Crichton C. A., Templeton A. G., McGrath J. C., Smith G. L. Thromboxane A2 analogue, U-46619, potentiates calcium-activated force in human umbilical artery. Am J Physiol. 1993 Jun;264(6 Pt 2):H1878–H1883. doi: 10.1152/ajpheart.1993.264.6.H1878. [DOI] [PubMed] [Google Scholar]
  8. Demaurex N., Lew D. P., Krause K. H. Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem. 1992 Feb 5;267(4):2318–2324. [PubMed] [Google Scholar]
  9. Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  10. García-Pascual A., Triguero D. Relaxation mechanisms induced by stimulation of nerves and by nitric oxide in sheep urethral muscle. J Physiol. 1994 Apr 15;476(2):333–347. doi: 10.1113/jphysiol.1994.sp020135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson A., Brave S. R., McFadzean I., Mirzazadeh S., Tucker J. F., Wayman C. Nitrergic stimulation does not inhibit carbachol-induced inositol phosphate generation in the rat anococcygeus. Neurosci Lett. 1994 Aug 29;178(1):35–38. doi: 10.1016/0304-3940(94)90283-6. [DOI] [PubMed] [Google Scholar]
  12. Gibson A., James T. A. The nature of potassium chloride-induced relaxations of the rat anococcygeus muscle. Br J Pharmacol. 1977 May;60(1):141–145. doi: 10.1111/j.1476-5381.1977.tb16758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gibson A., Mirzazadeh S., Hobbs A. J., Moore P. K. L-NG-monomethyl arginine and L-NG-nitro arginine inhibit non-adrenergic, non-cholinergic relaxation of the mouse anococcygeus muscle. Br J Pharmacol. 1990 Mar;99(3):602–606. doi: 10.1111/j.1476-5381.1990.tb12976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibson A., Mirzazadeh S. N-methylhydroxylamine inhibits and M&B 22948 potentiates relaxations of the mouse anococcygeus to non-adrenergic, non-cholinergic field stimulation and to nitrovasodilator drugs. Br J Pharmacol. 1989 Mar;96(3):637–644. doi: 10.1111/j.1476-5381.1989.tb11863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gillespie J. S., Liu X. R., Martin W. The effects of L-arginine and NG-monomethyl L-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation. Br J Pharmacol. 1989 Dec;98(4):1080–1082. doi: 10.1111/j.1476-5381.1989.tb12650.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Himpens B., Kitazawa T., Somlyo A. P. Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch. 1990 Sep;417(1):21–28. doi: 10.1007/BF00370764. [DOI] [PubMed] [Google Scholar]
  17. Hogg R. C., Wang Q., Large W. A. Effects of Cl channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol. 1994 Apr;111(4):1333–1341. doi: 10.1111/j.1476-5381.1994.tb14891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kurata R., Takayanagi I., Hisayama T. Eicosanoid-induced Ca2+ release and sustained contraction in Ca(2+)-free media are mediated by different signal transduction pathways in rat aorta. Br J Pharmacol. 1993 Oct;110(2):875–881. doi: 10.1111/j.1476-5381.1993.tb13894.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li C. G., Rand M. J. Evidence for a role of nitric oxide in the neurotransmitter system mediating relaxation of the rat anococcygeus muscle. Clin Exp Pharmacol Physiol. 1989 Dec;16(12):933–938. doi: 10.1111/j.1440-1681.1989.tb02404.x. [DOI] [PubMed] [Google Scholar]
  20. Lincoln T. M., Cornwell T. L. Intracellular cyclic GMP receptor proteins. FASEB J. 1993 Feb 1;7(2):328–338. doi: 10.1096/fasebj.7.2.7680013. [DOI] [PubMed] [Google Scholar]
  21. Lincoln T. M. Cyclic GMP and mechanisms of vasodilation. Pharmacol Ther. 1989;41(3):479–502. doi: 10.1016/0163-7258(89)90127-7. [DOI] [PubMed] [Google Scholar]
  22. Low A. M., Gaspar V., Kwan C. Y., Darby P. J., Bourreau J. P., Daniel E. E. Thapsigargin inhibits repletion of phenylephrine-sensitive intracellular Ca++ pool in vascular smooth muscles. J Pharmacol Exp Ther. 1991 Sep;258(3):1105–1113. [PubMed] [Google Scholar]
  23. Matsuo K., Gokita T., Karibe H., Uchida M. K. Ca2+-independent contraction of uterine smooth muscle. Biochem Biophys Res Commun. 1989 Dec 15;165(2):722–727. doi: 10.1016/s0006-291x(89)80026-9. [DOI] [PubMed] [Google Scholar]
  24. Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990 Oct 15;271(2):515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mirzazadeh S., Hobbs A. J., Tucker J. F., Gibson A. Cyclic nucleotide content of the rat anococcygeus during relaxations induced by drugs or by non-adrenergic, non-cholinergic field stimulation. J Pharm Pharmacol. 1991 Apr;43(4):247–251. doi: 10.1111/j.2042-7158.1991.tb06677.x. [DOI] [PubMed] [Google Scholar]
  26. Missiaen L., De Smedt H., Droogmans G., Himpens B., Casteels R. Calcium ion homeostasis in smooth muscle. Pharmacol Ther. 1992 Nov;56(2):191–231. doi: 10.1016/0163-7258(92)90017-t. [DOI] [PubMed] [Google Scholar]
  27. Mitchell J. A., Sheng H., Förstermann U., Murad F. Characterization of nitric oxide synthases in non-adrenergic non-cholinergic nerve containing tissue from the rat anococcygeus muscle. Br J Pharmacol. 1991 Oct;104(2):289–291. doi: 10.1111/j.1476-5381.1991.tb12422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nishimura J., van Breemen C. Direct regulation of smooth muscle contractile elements by second messengers. Biochem Biophys Res Commun. 1989 Sep 15;163(2):929–935. doi: 10.1016/0006-291x(89)92311-5. [DOI] [PubMed] [Google Scholar]
  29. Ozaki H., Ohyama T., Sato K., Karaki H. Ca2(+)-dependent and independent mechanisms of sustained contraction in vascular smooth muscle of rat aorta. Jpn J Pharmacol. 1990 Mar;52(3):509–512. doi: 10.1254/jjp.52.509. [DOI] [PubMed] [Google Scholar]
  30. Penner R., Fasolato C., Hoth M. Calcium influx and its control by calcium release. Curr Opin Neurobiol. 1993 Jun;3(3):368–374. doi: 10.1016/0959-4388(93)90130-q. [DOI] [PubMed] [Google Scholar]
  31. Pfitzer G., Hofmann F., DiSalvo J., Rüegg J. C. cGMP and cAMP inhibit tension development in skinned coronary arteries. Pflugers Arch. 1984 Jul;401(3):277–280. doi: 10.1007/BF00582596. [DOI] [PubMed] [Google Scholar]
  32. Ramagopal M. V., Leighton H. J. Effects of NG-monomethyl-L-arginine on field stimulation-induced decreases in cytosolic Ca2+ levels and relaxation in the rat anococcygeus muscle. Eur J Pharmacol. 1989 Dec 19;174(2-3):297–299. doi: 10.1016/0014-2999(89)90325-7. [DOI] [PubMed] [Google Scholar]
  33. Rand M. J. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin Exp Pharmacol Physiol. 1992 Mar;19(3):147–169. doi: 10.1111/j.1440-1681.1992.tb00433.x. [DOI] [PubMed] [Google Scholar]
  34. Thornbury K. D., Ward S. M., Dalziel H. H., Carl A., Westfall D. P., Sanders K. M. Nitric oxide and nitrosocysteine mimic nonadrenergic, noncholinergic hyperpolarization in canine proximal colon. Am J Physiol. 1991 Sep;261(3 Pt 1):G553–G557. doi: 10.1152/ajpgi.1991.261.3.G553. [DOI] [PubMed] [Google Scholar]
  35. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES