Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Dec;113(4):1093–1098. doi: 10.1111/j.1476-5381.1994.tb17108.x

Pharmacological reactivity of human epicardial coronary arteries: phasic and tonic responses to vasoconstrictor agents differentiated by nifedipine.

A P Stork 1, T M Cocks 1
PMCID: PMC1510518  PMID: 7889259

Abstract

1. Human epicardial coronary artery rings, freshly obtained from cardiac transplantation patients, commonly exhibited phasic contractile activity in vitro. This activity occurred either spontaneously or in response to vasoconstrictor stimulation. 2. Nifedipine pretreatment (1 nM-0.1 microM) reduced both types of phasic contractions in a concentration-dependent manner. At 0.1 microM nifedipine, spontaneous contractions were completely abolished, as were phasic contractions induced by U46619, endothelin-1 or 5-hydroxytryptamine (5-HT). 3. For U46619 (0.1-100 nM), the largest phasic contractions (amplitude peak to trough) occurred over the mid-range of concentrations used (1-10 nM). At higher concentrations (30-100 nM), phasic activity was reduced as the response reached a maximum. Estimated pEC50 values for the upper phasic and lower phasic curves were significantly different (8.71 +/- 0.13 versus 7.90 +/- 0.11; P < 0.05; n = 10). In the presence of nifidepine (0.1 microM), the purely tonic contraction curve to U46619 was similar to the lower phasic curve in the absence of nifedipine (pEC50 = 8.14 +/- 0.06, n = 10). Similar results were obtained for endothelin-1 (0.1-100 nM). 4. Responses to 5-HT (1 nM-3 microM) were more variable. The largest phasic contractions were spread unevenly throughout the concentration-response curve. In the presence of nifedipine (0.1 microM), the curve to 5-HT was significantly depressed in range but not sensitivity (pEC50) when compared with the phasic curves. 5. In conclusion, activation of dihydropyridine-sensitive voltage-operated Ca2+ channels mediated the phasic contractions commonly observed in human epicardial coronary arteries. These contractions amplified the contractile responses to low concentrations of vasoconstrictors.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1093

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus J. A. 5-HT receptors in the coronary circulation. Trends Pharmacol Sci. 1989 Mar;10(3):89–90. doi: 10.1016/0165-6147(89)90197-1. [DOI] [PubMed] [Google Scholar]
  2. Angus J. A., Brazenor R. M. Relaxation of large coronary artery by verapamil, D600, and nifedipine is constrictor selective: comparison with glyceryl trinitrate. J Cardiovasc Pharmacol. 1983 Mar-Apr;5(2):321–328. doi: 10.1097/00005344-198303000-00026. [DOI] [PubMed] [Google Scholar]
  3. Bax W. A., Renzenbrink G. J., Van Heuven-Nolsen D., Thijssen E. J., Bos E., Saxena P. R. 5-HT receptors mediating contractions of the isolated human coronary artery. Eur J Pharmacol. 1993 Aug 3;239(1-3):203–210. doi: 10.1016/0014-2999(93)90995-t. [DOI] [PubMed] [Google Scholar]
  4. Chester A. H., Allen S. P., Tadjkarimi S., Yacoub M. H. Interaction between thromboxane A2 and 5-hydroxytryptamine receptor subtypes in human coronary arteries. Circulation. 1993 Mar;87(3):874–880. doi: 10.1161/01.cir.87.3.874. [DOI] [PubMed] [Google Scholar]
  5. Chester A. H., Dashwood M. R., Clarke J. G., Larkin S. W., Davies G. J., Tadjkarimi S., Maseri A., Yacoub M. H. Influence of endothelin on human coronary arteries and localization of its binding sites. Am J Cardiol. 1989 Jun 1;63(18):1395–1398. doi: 10.1016/0002-9149(89)91055-2. [DOI] [PubMed] [Google Scholar]
  6. Chester A. H., Martin G. R., Bodelsson M., Arneklo-Nobin B., Tadjkarimi S., Tornebrandt K., Yacoub M. H. 5-Hydroxytryptamine receptor profile in healthy and diseased human epicardial coronary arteries. Cardiovasc Res. 1990 Nov;24(11):932–937. doi: 10.1093/cvr/24.11.932. [DOI] [PubMed] [Google Scholar]
  7. Clark A. H., Garland C. J. Ca2+ channel antagonists and inhibition of protein kinase C each block contraction but not depolarization to 5-hydroxytryptamine in the rabbit basilar artery. Eur J Pharmacol. 1993 Apr 22;235(1):113–116. doi: 10.1016/0014-2999(93)90828-6. [DOI] [PubMed] [Google Scholar]
  8. Cocks T. M., Kemp B. K., Pruneau D., Angus J. A. Comparison of contractile responses to 5-hydroxytryptamine and sumatriptan in human isolated coronary artery: synergy with the thromboxane A2-receptor agonist, U46619. Br J Pharmacol. 1993 Sep;110(1):360–368. doi: 10.1111/j.1476-5381.1993.tb13818.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Connor H. E., Feniuk W., Humphrey P. P. 5-Hydroxytryptamine contracts human coronary arteries predominantly via 5-HT2 receptor activation. Eur J Pharmacol. 1989 Feb 14;161(1):91–94. doi: 10.1016/0014-2999(89)90184-2. [DOI] [PubMed] [Google Scholar]
  10. Costello K. B., Stewart D. J., Baffour R. Endothelin is a potent constrictor of human vessels used in coronary revascularization surgery. Eur J Pharmacol. 1990 Sep 21;186(2-3):311–314. doi: 10.1016/0014-2999(90)90450-k. [DOI] [PubMed] [Google Scholar]
  11. Elghozi J. L., Head G. A. Spinal noradrenergic pathways and pressor responses to central angiotensin II. Am J Physiol. 1990 Jan;258(1 Pt 2):H240–H246. doi: 10.1152/ajpheart.1990.258.1.H240. [DOI] [PubMed] [Google Scholar]
  12. Ginsburg R. C. Myogenic tone of the isolated human epicardial artery: regulatory controls. Acta Med Scand Suppl. 1985;694:29–37. doi: 10.1111/j.0954-6820.1985.tb08797.x. [DOI] [PubMed] [Google Scholar]
  13. Ginsburg R., Bristow M. R., Davis K., Dibiase A., Billingham M. E. Quantitative pharmacologic responses of normal and atherosclerotic isolated human epicardial coronary arteries. Circulation. 1984 Feb;69(2):430–440. doi: 10.1161/01.cir.69.2.430. [DOI] [PubMed] [Google Scholar]
  14. Ginsburg R., Bristow M. R., Harrison D. C., Stinson E. B. Studies with isolated human coronary arteries. Some general observations, potential mediators of spasm, role of calcium antagonists. Chest. 1980 Jul;78(1 Suppl):180–186. [PubMed] [Google Scholar]
  15. Godfraind T., Finet M., Lima J. S., Miller R. C. Contractile activity of human coronary arteries and human myocardium in vitro and their sensitivity to calcium entry blockade by nifedipine. J Pharmacol Exp Ther. 1984 Aug;230(2):514–518. [PubMed] [Google Scholar]
  16. Ishii K., Yanagisawa T., Satoh K., Taira N. Abolition of spontaneous rhythmic contractions of isolated monkey coronary arteries by diltiazem, nifedipine, verapamil and nicorandil but not by nitroglycerin. Tohoku J Exp Med. 1985 Jan;145(1):85–90. doi: 10.1620/tjem.145.85. [DOI] [PubMed] [Google Scholar]
  17. Kalsner S. Coronary artery reactivity in human vessels: some questions and some answers. Fed Proc. 1985 Feb;44(2):321–325. [PubMed] [Google Scholar]
  18. Kalsner S., Richards R. Coronary arteries of cardiac patients are hyperreactive and contain stores of amines: a mechanism for coronary spasm. Science. 1984 Mar 30;223(4643):1435–1437. doi: 10.1126/science.6701530. [DOI] [PubMed] [Google Scholar]
  19. Kasuya Y., Takuwa Y., Yanagisawa M., Kimura S., Goto K., Masaki T. Endothelin-1 induces vasoconstriction through two functionally distinct pathways in porcine coronary artery: contribution of phosphoinositide turnover. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1049–1055. doi: 10.1016/0006-291x(89)91349-1. [DOI] [PubMed] [Google Scholar]
  20. Kimura T., Yasue H., Sakaino N., Rokutanda M., Jougasaki M., Araki H. Effects of magnesium on the tone of isolated human coronary arteries. Comparison with diltiazem and nitroglycerin. Circulation. 1989 May;79(5):1118–1124. doi: 10.1161/01.cir.79.5.1118. [DOI] [PubMed] [Google Scholar]
  21. Lüscher T. F., Yang Z., Tschudi M., von Segesser L., Stulz P., Boulanger C., Siebenmann R., Turina M., Bühler F. R. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins. Circ Res. 1990 Apr;66(4):1088–1094. doi: 10.1161/01.res.66.4.1088. [DOI] [PubMed] [Google Scholar]
  22. Maseri A., Davies G., Hackett D., Kaski J. C. Coronary artery spasm and vasoconstriction. The case for a distinction. Circulation. 1990 Jun;81(6):1983–1991. doi: 10.1161/01.cir.81.6.1983. [DOI] [PubMed] [Google Scholar]
  23. Maseri A., Davies G., Hackett D., Kaski J. C. Coronary artery spasm and vasoconstriction. The case for a distinction. Circulation. 1990 Jun;81(6):1983–1991. doi: 10.1161/01.cir.81.6.1983. [DOI] [PubMed] [Google Scholar]
  24. McFadden E. P., Clarke J. G., Davies G. J., Kaski J. C., Haider A. W., Maseri A. Effect of intracoronary serotonin on coronary vessels in patients with stable angina and patients with variant angina. N Engl J Med. 1991 Mar 7;324(10):648–654. doi: 10.1056/NEJM199103073241002. [DOI] [PubMed] [Google Scholar]
  25. Ross G., Stinson E., Schroeder J., Ginsburg R. Spontaneous phasic activity of isolated human coronary arteries. Cardiovasc Res. 1980 Oct;14(10):613–618. doi: 10.1093/cvr/14.10.613. [DOI] [PubMed] [Google Scholar]
  26. Sjögren A., Edvinsson L., Ottosson A. Vasomotor responses of isolated human coronary arteries to magnesium, nitroglycerin and verapamil: a comparison with coronary arteries from cat and rat. Acta Pharmacol Toxicol (Copenh) 1986 Sep;59(3):195–203. doi: 10.1111/j.1600-0773.1986.tb00154.x. [DOI] [PubMed] [Google Scholar]
  27. Stork A. P., Cocks T. M. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor. Br J Pharmacol. 1994 Dec;113(4):1099–1104. doi: 10.1111/j.1476-5381.1994.tb17109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Toda N. Responses of human, monkey and dog coronary arteries in vitro to carbocyclic thromboxane A2 and vasodilators. Br J Pharmacol. 1984 Oct;83(2):399–408. doi: 10.1111/j.1476-5381.1984.tb16500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  30. Weinheimer G., Golenhofen K., Mandrek K. Comparison of the inhibitory effects of nifedipine, nitroglycerin, and nitroprusside sodium on different types of activation in canine coronary arteries, with comparative studies in human coronary arteries. J Cardiovasc Pharmacol. 1983 Nov-Dec;5(6):989–997. doi: 10.1097/00005344-198311000-00012. [DOI] [PubMed] [Google Scholar]
  31. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  32. Yang Z. H., Richard V., von Segesser L., Bauer E., Stulz P., Turina M., Lüscher T. F. Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? Circulation. 1990 Jul;82(1):188–195. doi: 10.1161/01.cir.82.1.188. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES