Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1995 Mar;72(3):198–203. doi: 10.1136/adc.72.3.198

Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex.

J Farquharson 1, E C Jamieson 1, K A Abbasi 1, W J Patrick 1, R W Logan 1, F Cockburn 1
PMCID: PMC1511055  PMID: 7741563

Abstract

The fatty acid compositions of the major cerebral cortex phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were measured in 16 term and one preterm 'cot death' infants fed exclusively either breast milk or one of two formulas. Docosahexaenoic acid (DHA; C22:6n-3) content in cerebral cortex phosphatidylethanolamine and phosphatidylserine of breast fed infants was greater than in both formula groups with significances varying between p < 0.1 and p < 0.001. Compensation for this deficiency in DHA in the formula fed infants was largely achieved by increased incorporation of docosapentaenoic acid (C22:5n-6) in the cerebral cortex of term infants and Mead (C20:3n-9) and dihomo Mead acids (C22:3n-9) in the preterm infant. As the phospholipids most affected are known to perform an important role in membrane function and are possibly integral to neurotransmission it is recommended that breast milk substitute infant formulas should contain n-3 and n-6 series polyunsaturated fatty acids in proportions similar to those of human milk.

Full text

PDF
198

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki T., Kato H., Hara H., Kogure K. Postischemic binding of [3H]phorbol 12,13-dibutyrate and [3H]inositol 1,4,5-trisphosphate in the gerbil brain: an autoradiographic study. Neuroscience. 1992;46(4):973–980. doi: 10.1016/0306-4522(92)90198-b. [DOI] [PubMed] [Google Scholar]
  2. Besley G. T., Gatt S. Spectrophotometric and fluorimetric assays of galactocerebrosidase activity, their use in the diagnosis of Krabbe's disease. Clin Chim Acta. 1981 Feb 19;110(1):19–26. doi: 10.1016/0009-8981(81)90295-3. [DOI] [PubMed] [Google Scholar]
  3. Bourre J. M., Pascal G., Durand G., Masson M., Dumont O., Piciotti M. Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J Neurochem. 1984 Aug;43(2):342–348. doi: 10.1111/j.1471-4159.1984.tb00906.x. [DOI] [PubMed] [Google Scholar]
  4. Brooksbank B. W., Martinez M. Lipid abnormalities in the brain in adult Down's syndrome and Alzheimer's disease. Mol Chem Neuropathol. 1989 Dec;11(3):157–185. doi: 10.1007/BF03160049. [DOI] [PubMed] [Google Scholar]
  5. Carlson S. E., Werkman S. H., Peeples J. M., Wilson W. M. Long-chain fatty acids and early visual and cognitive development of preterm infants. Eur J Clin Nutr. 1994 Aug;48 (Suppl 2):S27–S30. [PubMed] [Google Scholar]
  6. Cook A. M., Low E., Ishijimi M. Effect of phosphatidyl serine decarboxylase on neural excitation. Nat New Biol. 1972 Oct 4;239(92):150–151. doi: 10.1038/newbio239150a0. [DOI] [PubMed] [Google Scholar]
  7. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  8. Farquharson J., Cockburn F., Patrick W. A., Jamieson E. C., Logan R. W. Effect of diet on infant subcutaneous tissue triglyceride fatty acids. Arch Dis Child. 1993 Nov;69(5):589–593. doi: 10.1136/adc.69.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farquharson J., Cockburn F., Patrick W. A., Jamieson E. C., Logan R. W. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet. 1992 Oct 3;340(8823):810–813. doi: 10.1016/0140-6736(92)92684-8. [DOI] [PubMed] [Google Scholar]
  10. Farquharson J., Jamieson E. C., Muir J., Cockburn F., Logan R. W. Direct gas chromatographic assay of urinary medium-chain fatty acylcarnitines by their thermal decomposition. Clin Chim Acta. 1992 Feb 14;205(3):233–240. doi: 10.1016/0009-8981(92)90064-w. [DOI] [PubMed] [Google Scholar]
  11. Fenske D. B., Jarrell H. C., Guo Y., Hui S. W. Effect of unsaturated phosphatidylethanolamine on the chain order profile of bilayers at the onset of the hexagonal phase transition. A 2H NMR study. Biochemistry. 1990 Dec 25;29(51):11222–11229. doi: 10.1021/bi00503a010. [DOI] [PubMed] [Google Scholar]
  12. Fisher S. K., Agranoff B. W. Receptor activation and inositol lipid hydrolysis in neural tissues. J Neurochem. 1987 Apr;48(4):999–1017. doi: 10.1111/j.1471-4159.1987.tb05618.x. [DOI] [PubMed] [Google Scholar]
  13. Forsythe I. D., Clements J. D. Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J Physiol. 1990 Oct;429:1–16. doi: 10.1113/jphysiol.1990.sp018240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henzi V., MacDermott A. B. Characteristics and function of Ca(2+)- and inositol 1,4,5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience. 1992;46(2):251–273. doi: 10.1016/0306-4522(92)90049-8. [DOI] [PubMed] [Google Scholar]
  15. Horrobin D. F., Manku M. S., Hillman H., Iain A., Glen M. Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry. 1991 Oct 15;30(8):795–805. doi: 10.1016/0006-3223(91)90235-e. [DOI] [PubMed] [Google Scholar]
  16. Koletzko B., Schmidt E., Bremer H. J., Haug M., Harzer G. Effects of dietary long-chain polyunsaturated fatty acids on the essential fatty acid status of premature infants. Eur J Pediatr. 1989 Jun;148(7):669–675. doi: 10.1007/BF00441531. [DOI] [PubMed] [Google Scholar]
  17. Lucas A., Morley R., Cole T. J., Gore S. M., Lucas P. J., Crowle P., Pearse R., Boon A. J., Powell R. Early diet in preterm babies and developmental status at 18 months. Lancet. 1990 Jun 23;335(8704):1477–1481. doi: 10.1016/0140-6736(90)93026-l. [DOI] [PubMed] [Google Scholar]
  18. Lucas A., Morley R., Cole T. J., Lister G., Leeson-Payne C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet. 1992 Feb 1;339(8788):261–264. doi: 10.1016/0140-6736(92)91329-7. [DOI] [PubMed] [Google Scholar]
  19. MOHRHAUER H., HOLMAN R. T. ALTERATION OF THE FATTY ACID COMPOSITION OF BRAIN LIPIDS BY VARYING LEVELS OF DIETARY ESSENTIAL FATTY ACIDS. J Neurochem. 1963 Jul;10:523–530. doi: 10.1111/j.1471-4159.1963.tb09855.x. [DOI] [PubMed] [Google Scholar]
  20. Makrides M., Neumann M. A., Byard R. W., Simmer K., Gibson R. A. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr. 1994 Aug;60(2):189–194. doi: 10.1093/ajcn/60.2.189. [DOI] [PubMed] [Google Scholar]
  21. Makrides M., Simmer K., Goggin M., Gibson R. A. Erythrocyte docosahexaenoic acid correlates with the visual response of healthy, term infants. Pediatr Res. 1993 Apr;33(4 Pt 1):425–427. doi: 10.1203/00006450-199304000-00021. [DOI] [PubMed] [Google Scholar]
  22. Nawy S., Jahr C. E. Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature. 1990 Jul 19;346(6281):269–271. doi: 10.1038/346269a0. [DOI] [PubMed] [Google Scholar]
  23. O'Brien J. S., Okada S., Chen A., Fillerup D. L. Tay-sachs disease. Detection of heterozygotes and homozygotes by serum hexosaminidase assay. N Engl J Med. 1970 Jul 2;283(1):15–20. doi: 10.1056/NEJM197007022830104. [DOI] [PubMed] [Google Scholar]
  24. Orlacchio A., Maffei C., Binaglia L., Porcellati G. The effect of membrane phospholipid acyl-chain composition on the activity of brain-beta-N-acetyl-D-glucosaminidase. Biochem J. 1981 May 1;195(2):383–388. doi: 10.1042/bj1950383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pisacane A., Impagliazzo N., Russo M., Valiani R., Mandarini A., Florio C., Vivo P. Breast feeding and multiple sclerosis. BMJ. 1994 May 28;308(6941):1411–1412. doi: 10.1136/bmj.308.6941.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Porcellati G., Arienti G., Pirotta M., Giorgini D. Base-exchange reactions for the synthesis of phospholipids in nervous tissue: the incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J Neurochem. 1971 Aug;18(8):1395–1417. doi: 10.1111/j.1471-4159.1971.tb00004.x. [DOI] [PubMed] [Google Scholar]
  27. Raghavan S. S., Topol J., Kolodny E. H. Leukocyte beta-glucosidase in homozygotes and heterozygotes for Gaucher disease. Am J Hum Genet. 1980 Mar;32(2):158–173. [PMC free article] [PubMed] [Google Scholar]
  28. Roe C. R., Millington D. S., Maltby D. A., Wellman R. B. Post-mortem recognition of inherited metabolic disorders from specific acylcarnitines in tissue in cases of sudden infant death. Lancet. 1987 Feb 28;1(8531):512–512. doi: 10.1016/s0140-6736(87)92126-x. [DOI] [PubMed] [Google Scholar]
  29. Sinclair A. J. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids. 1975 Mar;10(3):175–184. doi: 10.1007/BF02534156. [DOI] [PubMed] [Google Scholar]
  30. Slaughter M. M., Miller R. F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981 Jan 9;211(4478):182–185. doi: 10.1126/science.6255566. [DOI] [PubMed] [Google Scholar]
  31. Stubbs C. D., Smith A. D. Essential fatty acids in membrane: physical properties and function. Biochem Soc Trans. 1990 Oct;18(5):779–781. doi: 10.1042/bst0180779. [DOI] [PubMed] [Google Scholar]
  32. Stubbs C. D., Smith A. D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984 Jan 27;779(1):89–137. doi: 10.1016/0304-4157(84)90005-4. [DOI] [PubMed] [Google Scholar]
  33. Suzuki Y., Orii T., Mori M., Tatibana M., Hashimoto T. Deficient activities and proteins of peroxisomal beta-oxidation enzymes in infants with Zellweger syndrome. Clin Chim Acta. 1986 Apr 30;156(2):191–196. doi: 10.1016/0009-8981(86)90152-x. [DOI] [PubMed] [Google Scholar]
  34. Svennerholm L., Vanier M. T. The distribution of lipids in the human nervous system. 3. Fatty acid composition of phosphoglycerides of human foetal and infant brain. Brain Res. 1973 Feb 28;50(2):341–351. doi: 10.1016/0006-8993(73)90735-x. [DOI] [PubMed] [Google Scholar]
  35. Söderberg M., Edlund C., Kristensson K., Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids. 1991 Jun;26(6):421–425. doi: 10.1007/BF02536067. [DOI] [PubMed] [Google Scholar]
  36. Tanaka R. Comparison of lipid effects on K+-Mg2+ activated p-nitrophenyl phosphatase and Na+-K+-Mg2+ activated adenosine triphosphatase of membrane. J Neurochem. 1969 Sep;16(9):1301–1307. doi: 10.1111/j.1471-4159.1969.tb05980.x. [DOI] [PubMed] [Google Scholar]
  37. Uauy R., Birch E., Birch D., Peirano P. Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. J Pediatr. 1992 Apr;120(4 Pt 2):S168–S180. doi: 10.1016/s0022-3476(05)81252-1. [DOI] [PubMed] [Google Scholar]
  38. Voss A., Reinhart M., Sankarappa S., Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem. 1991 Oct 25;266(30):19995–20000. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES