Abstract
OBJECTIVE: To assess the bone mineral content in well nourished patients with cystic fibrosis and to seek a correlation with fat-free mass. METHODS: Fourteen cystic fibrosis patients aged 6 to 20 years were studied and compared to 14 healthy controls matched for gender, age, and nutritional status. Bone mineral content was determined by dual energy x ray absorptiometry (DEXA). RESULTS: Nutritional inquiry showed higher ingestion of macronutrients and micronutrients by cystic fibrosis patients than by controls. Mean whole skeleton bone mineral content was 1.184 (SD 0.536) kg in cystic fibrosis patients and 1.229 (0.576) kg in controls (p = 0.84). Mean lumbar spine bone mineral content was 0.031 (0.013) kg and 0.031 (0.016) kg, respectively (p = 0.99). Anthropometry, bioelectrical impedance analysis, and DEXA showed that fat-free mass was similar in the two groups. Bone mineral content was strongly correlated to fat-free mass. Mean blood calcium, phosphorus, serum 25-hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), and osteocalcin were similar in both groups. CONCLUSIONS: Bone mineral content and body composition are normal in a well nourished young cystic fibrosis population. Osteopenia previously reported in cystic fibrosis patients probably has nutritional origins and is therefore not related to a primary defect in bone mineral metabolism.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachrach L. K., Loutit C. W., Moss R. B. Osteopenia in adults with cystic fibrosis. Am J Med. 1994 Jan;96(1):27–34. doi: 10.1016/0002-9343(94)90112-0. [DOI] [PubMed] [Google Scholar]
- Bonjour J. P., Theintz G., Buchs B., Slosman D., Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991 Sep;73(3):555–563. doi: 10.1210/jcem-73-3-555. [DOI] [PubMed] [Google Scholar]
- Burckhardt P., Michel C. The peak bone mass concept. Clin Rheumatol. 1989 Jun;8 (Suppl 2):16–21. doi: 10.1007/BF02207228. [DOI] [PubMed] [Google Scholar]
- Chan G. M. Performance of dual-energy x-ray absorptiometry in evaluating bone, lean body mass, and fat in pediatric subjects. J Bone Miner Res. 1992 Apr;7(4):369–374. doi: 10.1002/jbmr.5650070403. [DOI] [PubMed] [Google Scholar]
- Chase H. P., Long M. A., Lavin M. H. Cystic fibrosis and malnutrition. J Pediatr. 1979 Sep;95(3):337–347. doi: 10.1016/s0022-3476(79)80504-1. [DOI] [PubMed] [Google Scholar]
- Chrispin A. R., Norman A. P. The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol. 1974;2(2):101–105. doi: 10.1007/BF01314939. [DOI] [PubMed] [Google Scholar]
- Deurenberg P., Pieters J. J., Hautvast J. G. The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr. 1990 Mar;63(2):293–303. doi: 10.1079/bjn19900116. [DOI] [PubMed] [Google Scholar]
- Deurenberg P., van der Kooy K., Leenen R., Weststrate J. A., Seidell J. C. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes. 1991 Jan;15(1):17–25. [PubMed] [Google Scholar]
- Dhuper S., Warren M. P., Brooks-Gunn J., Fox R. Effects of hormonal status on bone density in adolescent girls. J Clin Endocrinol Metab. 1990 Nov;71(5):1083–1088. doi: 10.1210/jcem-71-5-1083. [DOI] [PubMed] [Google Scholar]
- FitzSimmons S. C. The changing epidemiology of cystic fibrosis. J Pediatr. 1993 Jan;122(1):1–9. doi: 10.1016/s0022-3476(05)83478-x. [DOI] [PubMed] [Google Scholar]
- Gaskin K. J., Waters D. L., Soutter V. L., Baur L., Allen B. J., Blagojevic N., Parsons D. Body composition in cystic fibrosis. Basic Life Sci. 1990;55:15–21. doi: 10.1007/978-1-4613-1473-8_2. [DOI] [PubMed] [Google Scholar]
- Gibbens D. T., Gilsanz V., Boechat M. I., Dufer D., Carlson M. E., Wang C. I. Osteoporosis in cystic fibrosis. J Pediatr. 1988 Aug;113(2):295–300. doi: 10.1016/s0022-3476(88)80268-3. [DOI] [PubMed] [Google Scholar]
- Gilsanz V., Gibbens D. T., Roe T. F., Carlson M., Senac M. O., Boechat M. I., Huang H. K., Schulz E. E., Libanati C. R., Cann C. C. Vertebral bone density in children: effect of puberty. Radiology. 1988 Mar;166(3):847–850. doi: 10.1148/radiology.166.3.3340782. [DOI] [PubMed] [Google Scholar]
- Kraemer R., Rüdeberg A., Hadorn B., Rossi E. Relative underweight in cystic fibrosis and its prognostic value. Acta Paediatr Scand. 1978 Jan;67(1):33–37. doi: 10.1111/j.1651-2227.1978.tb16273.x. [DOI] [PubMed] [Google Scholar]
- Lukaski H. C., Johnson P. E., Bolonchuk W. W., Lykken G. I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985 Apr;41(4):810–817. doi: 10.1093/ajcn/41.4.810. [DOI] [PubMed] [Google Scholar]
- Mazess R. B., Barden H. S., Bisek J. P., Hanson J. Dual-energy x-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr. 1990 Jun;51(6):1106–1112. doi: 10.1093/ajcn/51.6.1106. [DOI] [PubMed] [Google Scholar]
- Mischler E. H., Chesney P. J., Chesney R. W., Mazess R. B. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child. 1979 Jun;133(6):632–635. doi: 10.1001/archpedi.1979.02130060072016. [DOI] [PubMed] [Google Scholar]
- Newby M. J., Keim N. L., Brown D. L. Body composition of adult cystic fibrosis patients and control subjects as determined by densitometry, bioelectrical impedance, total-body electrical conductivity, skinfold measurements, and deuterium oxide dilution. Am J Clin Nutr. 1990 Aug;52(2):209–213. doi: 10.1093/ajcn/52.2.209. [DOI] [PubMed] [Google Scholar]
- Parsons H. G., Beaudry P., Dumas A., Pencharz P. B. Energy needs and growth in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 1983;2(1):44–49. doi: 10.1097/00005176-198302010-00005. [DOI] [PubMed] [Google Scholar]
- Reiter E. O., Brugman S. M., Pike J. W., Pitt M., Dokoh S., Haussler M. R., Gerstle R. S., Taussig L. M. Vitamin D metabolites in adolescents and young adults with cystic fibrosis: effects of sun and season. J Pediatr. 1985 Jan;106(1):21–26. doi: 10.1016/s0022-3476(85)80458-3. [DOI] [PubMed] [Google Scholar]
- Riis B. J., Krabbe S., Christiansen C., Catherwood B. D., Deftos L. J. Bone turnover in male puberty: a longitudinal study. Calcif Tissue Int. 1985 May;37(3):213–217. doi: 10.1007/BF02554865. [DOI] [PubMed] [Google Scholar]
- Rochat T., Slosman D. O., Pichard C., Belli D. C. Body composition analysis by dual-energy x-ray absorptiometry in adults with cystic fibrosis. Chest. 1994 Sep;106(3):800–805. doi: 10.1378/chest.106.3.800. [DOI] [PubMed] [Google Scholar]
- SHWACHMAN H., KULCZYCKI L. L. Long-term study of one hundred five patients with cystic fibrosis; studies made over a five- to fourteen-year period. AMA J Dis Child. 1958 Jul;96(1):6–15. doi: 10.1001/archpedi.1958.02060060008002. [DOI] [PubMed] [Google Scholar]
- Slemenda C. W., Miller J. Z., Hui S. L., Reister T. K., Johnston C. C., Jr Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991 Nov;6(11):1227–1233. doi: 10.1002/jbmr.5650061113. [DOI] [PubMed] [Google Scholar]
- Spicher V., Roulet M., Schaffner C., Schutz Y. Bio-electrical impedance analysis for estimation of fat-free mass and muscle mass in cystic fibrosis patients. Eur J Pediatr. 1993 Mar;152(3):222–225. doi: 10.1007/BF01956149. [DOI] [PubMed] [Google Scholar]
- Spicher V., Roulet M., Schutz Y. Assessment of total energy expenditure in free-living patients with cystic fibrosis. J Pediatr. 1991 Jun;118(6):865–872. doi: 10.1016/s0022-3476(05)82196-1. [DOI] [PubMed] [Google Scholar]
- Weisman Y., Reiter E., Stern R. C., Root A. Serum concentrations of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D in patients with cystic fibrosis. J Pediatr. 1979 Sep;95(3):416–418. doi: 10.1016/s0022-3476(79)80521-1. [DOI] [PubMed] [Google Scholar]