Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1991 Feb;91:89–132. doi: 10.1289/ehp.919189

Effects of carbon monoxide on myocardial ischemia.

E N Allred 1, E R Bleecker 1, B R Chaitman 1, T E Dahms 1, S O Gottlieb 1, J D Hackney 1, M Pagano 1, R H Selvester 1, S M Walden 1, J Warren 1
PMCID: PMC1519354  PMID: 2040254

Abstract

The purpose of this study was to determine whether low doses of carbon monoxide (CO) exacerbate myocardial ischemia during a progressive exercise test. The effect of CO exposure was evaluated using the objective measure of time to development of electrocardiographic changes indicative of ischemia and the subjective measure of time to onset of angina. Sixty-three male subjects (41-75 years) with well-documented coronary artery disease, who had exertional angina pectoris and ischemic ST-segment changes in their electrocardiograms, were studied. Results from three randomized, double-blind test visits (room air, low and high CO) were compared. The effect of CO exposure was determined from the percent difference in the end points obtained on exercise tests performed before and after a 1-hr exposure to room air or CO. The exposures resulted in postexercise carboxyhemoglobin (COHb) levels of 0.6% +/- 0.3%, 2.0% +/- 0.1%, and 3.9% +/- 0.1%. The results obtained on the 2%-COHb day and 3.9%-COHb day were compared to those on the room air day. There were 5.1% (p = 0.01) and 12.1% (p less than or equal to 0.0001) decreases in the time to development of ischemic ST-segment changes after exposures producing 2.0 and 3.9% COHb, respectively, compared to the control day. In addition, there were 4.2% (p = 0.027) and 7.1% (p = 0.002) decreases in time to the onset of angina after exposures producing 2.0 and 3.9% COHb, respectively, compared to the control day. A significant dose-response relationship was found for the individual differences in the time to ST end point and angina for the pre- versus postexposure exercise tests at the three carboxyhemoglobin levels. These findings demonstrate that low doses of CO produce significant effects on cardiac function during exercise in subjects with coronary artery disease.

Full text

PDF
89

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams K. F., Koch G., Chatterjee B., Goldstein G. M., O'Neil J. J., Bromberg P. A., Sheps D. S. Acute elevation of blood carboxyhemoglobin to 6% impairs exercise performance and aggravates symptoms in patients with ischemic heart disease. J Am Coll Cardiol. 1988 Oct;12(4):900–909. doi: 10.1016/0735-1097(88)90452-4. [DOI] [PubMed] [Google Scholar]
  2. Allred E. N., Bleecker E. R., Chaitman B. R., Dahms T. E., Gottlieb S. O., Hackney J. D., Pagano M., Selvester R. H., Walden S. M., Warren J. Short-term effects of carbon monoxide exposure on the exercise performance of subjects with coronary artery disease. N Engl J Med. 1989 Nov 23;321(21):1426–1432. doi: 10.1056/NEJM198911233212102. [DOI] [PubMed] [Google Scholar]
  3. Anderson E. W., Andelman R. J., Strauch J. M., Fortuin N. J., Knelson J. H. Effect of low-level carbon monoxide exposure on onset and duration of angina pectoris. A study in ten patients with ischemic heart disease. Ann Intern Med. 1973 Jul;79(1):46–50. doi: 10.7326/0003-4819-79-1-46. [DOI] [PubMed] [Google Scholar]
  4. Aronow W. S. Aggravation of angina pectoris by two percent carboxyhemoglobin. Am Heart J. 1981 Feb;101(2):154–157. doi: 10.1016/0002-8703(81)90658-x. [DOI] [PubMed] [Google Scholar]
  5. Aronow W. S., Isbell M. W. Carbon monoxide effect on exercise-induced angina pectoris. Ann Intern Med. 1973 Sep;79(3):392–395. doi: 10.7326/0003-4819-79-3-392. [DOI] [PubMed] [Google Scholar]
  6. Ayres S. M., Evans R. G., Buehler M. E. The prevalence of carboxyhemoglobinemia in New Yorkers and its effects on the coronary and systemic circulation. Prev Med. 1979 May;8(3):323–332. doi: 10.1016/0091-7435(79)90009-4. [DOI] [PubMed] [Google Scholar]
  7. Beard R. R., Wertheim G. A. Behavioral impairment associated with small doses of carbon monoxide. Am J Public Health Nations Health. 1967 Nov;57(11):2012–2022. doi: 10.2105/ajph.57.11.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boden W. E., Bough E. W., Reichman M. J., Rich V. B., Young P. M., Korr K. S., Shulman R. S. Beneficial effects of high-dose diltiazem in patients with persistent effort angina on beta-blockers and nitrates: a randomized, double-blind, placebo-controlled cross-over study. Circulation. 1985 Jun;71(6):1197–1205. doi: 10.1161/01.cir.71.6.1197. [DOI] [PubMed] [Google Scholar]
  9. Bolli R., Fisher D. J., Entman M. L. Factors that determine the occurrence of arrhythmias during acute myocardial ischemia. Am Heart J. 1986 Feb;111(2):261–270. doi: 10.1016/0002-8703(86)90138-9. [DOI] [PubMed] [Google Scholar]
  10. Campeau L. Letter: Grading of angina pectoris. Circulation. 1976 Sep;54(3):522–523. [PubMed] [Google Scholar]
  11. Chaitman B. R., Hanson J. S. Comparative sensitivity and specificity of exercise electrocardiographic lead systems. Am J Cardiol. 1981 Jun;47(6):1335–1349. doi: 10.1016/0002-9149(81)90267-8. [DOI] [PubMed] [Google Scholar]
  12. Chaitman B. R., Wagniart P., Pasternac A., Brevers G., Scholl J. M., Lam J., Methe M., Ferguson R. J., Bourassa M. G. Improved exercise tolerance after propranolol, diltiazem or nifedipine in angina pectoris: comparison at 1, 3 and 8 hours and correlation with plasma drug concentration. Am J Cardiol. 1984 Jan 1;53(1):1–9. doi: 10.1016/0002-9149(84)90674-x. [DOI] [PubMed] [Google Scholar]
  13. Dahms T. E., Horvath S. M. Rapid, accurate technique for determination of carbon monoxide in blood. Clin Chem. 1974 May;20(5):533–537. [PubMed] [Google Scholar]
  14. Douglas C. G., Haldane J. S., Haldane J. B. The laws of combination of haemoglobin with carbon monoxide and oxygen. J Physiol. 1912 Jun 12;44(4):275–304. doi: 10.1113/jphysiol.1912.sp001517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eilers R. J. Notification of final adoption of an international method and standard solution for hemoglobinometry specifications for preparation of standard solution. Am J Clin Pathol. 1967 Feb;47(2):212–214. doi: 10.1093/ajcp/47.2.212. [DOI] [PubMed] [Google Scholar]
  16. Geft I. L., Fishbein M. C., Ninomiya K., Hashida J., Chaux E., Yano J., Y-Rit J., Genov T., Shell W., Ganz W. Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis. Circulation. 1982 Dec;66(6):1150–1153. doi: 10.1161/01.cir.66.6.1150. [DOI] [PubMed] [Google Scholar]
  17. Guiteras P., Chaitman B. R., Waters D. D., Bourassa M. G., Scholl J. M., Ferguson R. J., Wagniart P. Diagnostic accuracy of exercise ECG lead systems in clinical subsets of women. Circulation. 1982 Jun;65(7):1465–1474. doi: 10.1161/01.cir.65.7.1465. [DOI] [PubMed] [Google Scholar]
  18. Horvath S. M., Bedi J. F., Wagner J. A., Agnew J. Maximal aerobic capacity at several ambient concentrations of CO at several altitudes. J Appl Physiol (1985) 1988 Dec;65(6):2696–2708. doi: 10.1152/jappl.1988.65.6.2696. [DOI] [PubMed] [Google Scholar]
  19. Jorgensen C. R., Wang K., Wang Y., Gobel F. L., Nelson R. R., Taylor H. Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation. 1973 Dec;48(6):1173–1182. doi: 10.1161/01.cir.48.6.1173. [DOI] [PubMed] [Google Scholar]
  20. Joy M., Cairns A. W., Sprigings D. Observations on the warm up phenomenon in angina pectoris. Br Heart J. 1987 Aug;58(2):116–121. doi: 10.1136/hrt.58.2.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kattus A. A., Alvaro A. B., Zohman L. R., Coulson A. H. Comparison of placebo, nitroglycerin, and isosorbide dinitrate for effectiveness of relief of angina and duration of action. Chest. 1979 Jan;75(1):17–23. doi: 10.1378/chest.75.1.17. [DOI] [PubMed] [Google Scholar]
  22. Kleinman M. T., Davidson D. M., Vandagriff R. B., Caiozzo V. J., Whittenberger J. L. Effects of short-term exposure to carbon monoxide in subjects with coronary artery disease. Arch Environ Health. 1989 Nov-Dec;44(6):361–369. doi: 10.1080/00039896.1989.9935908. [DOI] [PubMed] [Google Scholar]
  23. Mason R. E., Likar I. A new system of multiple-lead exercise electrocardiography. Am Heart J. 1966 Feb;71(2):196–205. doi: 10.1016/0002-8703(66)90182-7. [DOI] [PubMed] [Google Scholar]
  24. Moore E. N., Spear J. F. Ventricular fibrillation threshold; its physiological and pharmacological importance. Arch Intern Med. 1975 Mar;135(3):446–453. doi: 10.1001/archinte.135.3.446. [DOI] [PubMed] [Google Scholar]
  25. Morady F., DiCarlo L. A., Jr, Krol R. B., Annesley T. M., O'Neill W. W., de Buitleir M., Baerman J. M., Kou W. H. Role of myocardial ischemia during programmed stimulation in survivors of cardiac arrest with coronary artery disease. J Am Coll Cardiol. 1987 May;9(5):1004–1012. doi: 10.1016/s0735-1097(87)80300-5. [DOI] [PubMed] [Google Scholar]
  26. Parker J. O., Farrell B., Lahey K. A., Moe G. Effect of intervals between doses on the development of tolerance to isosorbide dinitrate. N Engl J Med. 1987 Jun 4;316(23):1440–1444. doi: 10.1056/NEJM198706043162303. [DOI] [PubMed] [Google Scholar]
  27. Parker J. O., Fung H. L. Transdermal nitroglycerin in angina pectoris. Am J Cardiol. 1984 Sep 1;54(6):471–476. doi: 10.1016/0002-9149(84)90233-9. [DOI] [PubMed] [Google Scholar]
  28. Petru M. A., Crawford M. H., Sorensen S. G., Chaudhuri T. K., Levine S., O'Rourke R. A. Short- and long-term efficacy of high-dose oral diltiazem for angina due to coronary artery disease: a placebo-controlled, randomized, double-blind crossover study. Circulation. 1983 Jul;68(1):139–147. doi: 10.1161/01.cir.68.1.139. [DOI] [PubMed] [Google Scholar]
  29. Redwood D. R., Rosing D. R., Goldstein R. E., Beiser G. D., Epstein S. E. Importance of the design of an exercise protocol in the evaluation of patients with angina pectoris. Circulation. 1971 May;43(5):618–628. doi: 10.1161/01.cir.43.5.618. [DOI] [PubMed] [Google Scholar]
  30. Robinson B. F. Relation of heart rate and systolic blood pressure to the onset of pain in angina pectoris. Circulation. 1967 Jun;35(6):1073–1083. doi: 10.1161/01.cir.35.6.1073. [DOI] [PubMed] [Google Scholar]
  31. Sheps D. S., Adams K. F., Jr, Bromberg P. A., Goldstein G. M., O'Neil J. J., Horstman D., Koch G. Lack of effect of low levels of carboxyhemoglobin on cardiovascular function in patients with ischemic heart disease. Arch Environ Health. 1987 Mar-Apr;42(2):108–116. doi: 10.1080/00039896.1987.9935805. [DOI] [PubMed] [Google Scholar]
  32. Smokler P. E., MacAlpin R. N., Alvaro A., Kattus A. A. Reproducibility of a multi-stage near maximal treadmill test for exercise tolerance in angina pectoris. Circulation. 1973 Aug;48(2):346–351. doi: 10.1161/01.cir.48.2.346. [DOI] [PubMed] [Google Scholar]
  33. Sonnenblick E. H., Ross J., Jr, Braunwald E. Oxygen consumption of the heart. Newer concepts of its multifactoral determination. Am J Cardiol. 1968 Sep;22(3):328–336. doi: 10.1016/0002-9149(68)90117-3. [DOI] [PubMed] [Google Scholar]
  34. Starling M. R., Moody M., Crawford M. H., Levi B., O'Rourke R. A. Repeat treadmill exercise testing: variability of results in patients with angina pectoris. Am Heart J. 1984 Feb;107(2):298–303. doi: 10.1016/0002-8703(84)90378-8. [DOI] [PubMed] [Google Scholar]
  35. Stuart R. J., Ellestad M. H. Upsloping S-T segments in exercise stress testing. Six year follow-up study of 438 patients and correlation with 248 angiograms. Am J Cardiol. 1976 Jan;37(1):19–22. doi: 10.1016/0002-9149(76)90493-8. [DOI] [PubMed] [Google Scholar]
  36. Thadani U., Fung H. L., Darke A. C., Parker J. O. Oral isosorbide dinitrate in angina pectoris: comparison of duration of action an dose-response relation during acute and sustained therapy. Am J Cardiol. 1982 Feb 1;49(2):411–419. doi: 10.1016/0002-9149(82)90518-5. [DOI] [PubMed] [Google Scholar]
  37. Wallace L. A., Ziegenfus R. C. Comparison of carboxyhemoglobin concentrations in adult nonsmokers with ambient carbon monoxide levels. J Air Pollut Control Assoc. 1985 Sep;35(9):944–949. doi: 10.1080/00022470.1985.10465982. [DOI] [PubMed] [Google Scholar]
  38. Waters D. D., McCans J. L., Crean P. A. Serial exercise testing in patients with effort angina: variable tolerance, fixed threshold. J Am Coll Cardiol. 1985 Nov;6(5):1011–1015. doi: 10.1016/s0735-1097(85)80302-8. [DOI] [PubMed] [Google Scholar]
  39. Weiner D. A., Ryan T. J., McCabe C. H., Kennedy J. W., Schloss M., Tristani F., Chaitman B. R., Fisher L. D. Exercise stress testing. Correlations among history of angina, ST-segment response and prevalence of coronary-artery disease in the Coronary Artery Surgery Study (CASS). N Engl J Med. 1979 Aug 2;301(5):230–235. doi: 10.1056/NEJM197908023010502. [DOI] [PubMed] [Google Scholar]
  40. Weiner D. A., Ryan T. J., McCabe C. H., Luk S., Chaitman B. R., Sheffield L. T., Tristani F., Fisher L. D. Significance of silent myocardial ischemia during exercise testing in patients with coronary artery disease. Am J Cardiol. 1987 Apr 1;59(8):725–729. doi: 10.1016/0002-9149(87)91081-2. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES