Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1991 May;92:75–81. doi: 10.1289/ehp.919275

A possible role for chromium(III) in genotoxicity.

E T Snow 1
PMCID: PMC1519381  PMID: 1935855

Abstract

Chromium is found in the environment in two major forms: reduced CrIII and CrVI, or chromate. Chromate, the most biologically active species, is readily taken up by living cells and reduced intracellularly, via reactive intermediates, to stable CrIII species. CrIII, the most abundant form of chromium in the environment, does not readily cross cell membranes and is relatively inactive in vivo. However, intracellular CrIII can react slowly with both nucleic acids and proteins and can be genotoxic. We have investigated the genotoxicity of CrIII in vitro using a DNA replication assay and in vivo by CaCl2-mediated transfection of chromium-treated DNA into Escherichia coli. When DNA replication was measured on a CrIII-treated template using purified DNA polymerases (either bacterial or mammalian), both the rate of DNA replication and the amount of incorporation per polymerase binding event (processivity) were greatly increased relative to controls. When transfected into E. coli, CrIII-treated M13mp2 bacteriophage DNA showed a dose-dependent increase in mutation frequency. These results suggest that CrIII alters the interaction between the DNA template and the polymerase such that the binding strength of the DNA polymerase is increased and the fidelity of DNA replication is decreased. These interactions may contribute to the mutagenicity of chromium ions in vivo and suggest that CrIII can contribute to chromium-mediated carcinogenesis.

Full text

PDF
75

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman R. A., Mildvan A. S., Loeb L. A. On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry. 1985 Oct 8;24(21):5810–5817. doi: 10.1021/bi00342a019. [DOI] [PubMed] [Google Scholar]
  2. Bernges F., Holler E. Effects of coordination of diammineplatinum(II) with DNA on the activities of Escherichia coli DNA polymerase I. Biochemistry. 1988 Aug 23;27(17):6398–6402. doi: 10.1021/bi00417a031. [DOI] [PubMed] [Google Scholar]
  3. Bianchi V., Celotti L., Lanfranchi G., Majone F., Marin G., Montaldi A., Sponza G., Tamino G., Venier P., Zantedeschi A. Genetic effects of chromium compounds. Mutat Res. 1983 May-Jun;117(3-4):279–300. doi: 10.1016/0165-1218(83)90128-3. [DOI] [PubMed] [Google Scholar]
  4. Cohen M. D., Miller C. A., Xu L. S., Snow E. T., Costa M. A blotting method for monitoring the formation of chemically induced DNA-protein complexes. Anal Biochem. 1990 Apr;186(1):1–7. doi: 10.1016/0003-2697(90)90562-n. [DOI] [PubMed] [Google Scholar]
  5. Cupo D. Y., Wetterhahn K. E. Binding of chromium to chromatin and DNA from liver and kidney of rats treated with sodium dichromate and chromium(III) chloride in vivo. Cancer Res. 1985 Mar;45(3):1146–1151. [PubMed] [Google Scholar]
  6. El-Deiry W. S., Downey K. M., So A. G. Molecular mechanisms of manganese mutagenesis. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7378–7382. doi: 10.1073/pnas.81.23.7378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fornace A. J., Jr, Seres D. S., Lechner J. F., Harris C. C. DNA-protein cross-linking by chromium salts. Chem Biol Interact. 1981 Sep;36(3):345–354. doi: 10.1016/0009-2797(81)90077-6. [DOI] [PubMed] [Google Scholar]
  8. Goodman M. F., Keener S., Guidotti S., Branscomb E. W. On the enzymatic basis for mutagenesis by manganese. J Biol Chem. 1983 Mar 25;258(6):3469–3475. [PubMed] [Google Scholar]
  9. Hillebrand G. G., Beattie K. L. Template-dependent variation in the relative fidelity of DNA polymerase I of Escherichia coli in the presence of Mg2+ versus Mn2+. Nucleic Acids Res. 1984 Apr 11;12(7):3173–3183. doi: 10.1093/nar/12.7.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hohn K. T., Grosse F. Processivity of the DNA polymerase alpha-primase complex from calf thymus. Biochemistry. 1987 May 19;26(10):2870–2878. doi: 10.1021/bi00384a031. [DOI] [PubMed] [Google Scholar]
  11. Léonard A., Lauwerys R. R. Carcinogenicity and mutagenicity of chromium. Mutat Res. 1980 Nov;76(3):227–239. doi: 10.1016/0165-1110(80)90018-4. [DOI] [PubMed] [Google Scholar]
  12. MacRae W. D., Whiting R. F., Stich H. F. Sister chromatid exchanges induced in cultured mammalian cells by chromate. Chem Biol Interact. 1979 Aug;26(3):281–286. doi: 10.1016/0009-2797(79)90031-0. [DOI] [PubMed] [Google Scholar]
  13. Nakamuro K., Yoshikawa K., Sayato Y., Kurata H. Comparative studies of chromosomal aberration and mutagenicity of the trivalent and hexavalent chromium. Mutat Res. 1978 Nov;58(2-3):175–181. doi: 10.1016/0165-1218(78)90007-1. [DOI] [PubMed] [Google Scholar]
  14. Nishio A., Uyeki E. M. Inhibition of DNA synthesis by chromium compounds. J Toxicol Environ Health. 1985;15(2):237–244. doi: 10.1080/15287398509530650. [DOI] [PubMed] [Google Scholar]
  15. Niyogi S. K., Feldman R. P., Hoffman D. J. Selective effects of metal ions on RNA synthesis rates. Toxicology. 1981;22(1):9–21. doi: 10.1016/0300-483x(81)90003-2. [DOI] [PubMed] [Google Scholar]
  16. Ohba H., Suketa Y., Okada S. Enhancement of in vitro ribonucleic acid synthesis on chromium(III)-bound chromatin. J Inorg Biochem. 1986 Jul;27(3):179–189. doi: 10.1016/0162-0134(86)80059-9. [DOI] [PubMed] [Google Scholar]
  17. Okada S., Ohba H., Taniyama M. Alterations in ribonucleic acid synthesis by chromium (III). J Inorg Biochem. 1981 Nov;15(3):223–231. doi: 10.1016/s0162-0134(00)80157-9. [DOI] [PubMed] [Google Scholar]
  18. Okada S., Suzuki M., Ohba H. Enhancement of ribonucleic acid synthesis by chromium(III) in mouse liver. J Inorg Biochem. 1983 Oct;19(2):95–103. doi: 10.1016/0162-0134(83)85015-6. [DOI] [PubMed] [Google Scholar]
  19. Petrilli F. L., De Flora S. Interpretations on chromium mutagenicity and carcinogenicity. Prog Clin Biol Res. 1982;109:453–464. [PubMed] [Google Scholar]
  20. Rabkin S. D., Strauss B. S. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. J Mol Biol. 1984 Sep 25;178(3):569–594. doi: 10.1016/0022-2836(84)90239-0. [DOI] [PubMed] [Google Scholar]
  21. SCHROEDER H. A., BALASSA J. J., TIPTON I. H. Abnormal trace metals in man--chromium. J Chronic Dis. 1962 Oct;15:941–964. doi: 10.1016/0021-9681(62)90114-5. [DOI] [PubMed] [Google Scholar]
  22. Schaaper R. M., Koplitz R. M., Tkeshelashvili L. K., Loeb L. A. Metal-induced lethality and mutagenesis: possible role of apurinic intermediates. Mutat Res. 1987 Apr;177(2):179–188. doi: 10.1016/0027-5107(87)90001-7. [DOI] [PubMed] [Google Scholar]
  23. Sirover M. A., Dube D. K., Loeb L. A. On the fidelity of DNA replication. Metal activation of Escherichia coli DNA polymerase I. J Biol Chem. 1979 Jan 10;254(1):107–111. [PubMed] [Google Scholar]
  24. Sirover M. A., Loeb L. A. On the fidelity of DNA replication. Effect of metal activators during synthesis with avian myeloblastosis virus DNA polymerase. J Biol Chem. 1977 Jun 10;252(11):3605–3610. [PubMed] [Google Scholar]
  25. Sugden K. D., Burris R. B., Rogers S. J. An oxygen dependence in chromium mutagenesis. Mutat Res. 1990 Jul;244(3):239–244. doi: 10.1016/0165-7992(90)90135-7. [DOI] [PubMed] [Google Scholar]
  26. Tkeshelashvili L. K., Shearman C. W., Zakour R. A., Koplitz R. M., Loeb L. A. Effects of arsenic, selenium, and chromium on the fidelity of DNA synthesis. Cancer Res. 1980 Jul;40(7):2455–2460. [PubMed] [Google Scholar]
  27. Tsapakos M. J., Wetterhahn K. E. The interaction of chromium with nucleic acids. Chem Biol Interact. 1983 Sep 1;46(2):265–277. doi: 10.1016/0009-2797(83)90034-0. [DOI] [PubMed] [Google Scholar]
  28. Van Steenwinkel R., Campagnari F., Merlini M. Interaction of Mn2+ with DNA as studied by proton-relaxation enhancement of solvent water. Biopolymers. 1981 May;20(5):915–923. doi: 10.1002/bip.1981.360200506. [DOI] [PubMed] [Google Scholar]
  29. Villani G., Hübscher U., Butour J. L. Sites of termination of in vitro DNA synthesis on cis-diamminedichloroplatinum(II) treated single-stranded DNA: a comparison between E. coli DNA polymerase I and eucaryotic DNA polymerases alpha. Nucleic Acids Res. 1988 May 25;16(10):4407–4418. doi: 10.1093/nar/16.10.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Warren G., Schultz P., Bancroft D., Bennett K., Abbott E. H., Rogers S. Mutagenicity of a series of hexacoordinate chromium (III) compounds. Mutat Res. 1981 Oct;90(2):111–118. doi: 10.1016/0165-1218(81)90073-2. [DOI] [PubMed] [Google Scholar]
  31. Whiting R. F., Stich H. F., Koropatnick D. J. DNA damage and DNA repair in cultured human cells exposed to chromate. Chem Biol Interact. 1979 Aug;26(3):267–280. doi: 10.1016/0009-2797(79)90030-9. [DOI] [PubMed] [Google Scholar]
  32. Wilson S., Abbotts J., Widen S. Progress toward molecular biology of DNA polymerase beta. Biochim Biophys Acta. 1988 Feb 28;949(2):149–157. doi: 10.1016/0167-4781(88)90078-4. [DOI] [PubMed] [Google Scholar]
  33. Wolf T., Kasemann R., Ottenwälder H. Molecular interaction of different chromium species with nucleotides and nucleic acids. Carcinogenesis. 1989 Apr;10(4):655–659. doi: 10.1093/carcin/10.4.655. [DOI] [PubMed] [Google Scholar]
  34. Zakour R. A., Glickman B. W. Metal-induced mutagenesis in the lacI gene of Escherichia coli. Mutat Res. 1984 Mar;126(1):9–18. doi: 10.1016/0027-5107(84)90164-7. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES