Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1992 Jul;97:5–10. doi: 10.1289/ehp.92975

Mechanisms, measurement, and significance of lung macrophage function.

J D Brain 1
PMCID: PMC1519548  PMID: 1396468

Abstract

Macrophages exist throughout the body. They have critical roles in the peritoneal cavity, bone marrow, skin, spleen, liver, and elsewhere. Their migratory patterns, phagocytic behavior, immunologic roles, and secretory potential are pivotal to both defense mechanisms and to the pathogenesis of disease. Macrophages have been implicated recently in such diverse disease processes as arthritis, AIDS, and juvenile onset diabetes. It is important to recognize the existence of other lung macrophages besides alveolar macrophages. Macrophages exist in small and large airways above and below the mucus. They may release chemotactic factors and a variety of mediators. They ingest and degrade antigens and are microbicidal. Interstitial macrophages are in direct contact with the extracellular matrix as well as other cells in pulmonary connective tissue such as fibroblasts. Thus, release of mediators or enzymes by interstitial macrophages can have a profound effect. Pulmonary intravascular macrophages are resident cells within the pulmonary capillaries of some species. They avidly remove particles and pathogens from circulating blood and secrete inflammatory mediators. Finally, pleural macrophages are involved in the fate and consequences of inhaled particles, especially fibers. A key attribute of macrophages is motility. Movement is an essential step in phagocytosis. There can be no particle binding or ingestion unless macrophage-particle contact occurs. To what extent and by what mechanisms do alveolar macrophages move on the alveolar epithelium? We have used optical methods as well as magnetometry to describe macrophage motility. Lung macrophages express an array of contractile proteins that are responsible for spreading, migration, phagocytosis, and the controlled intracellular motions of phagosomes and lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
5

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman N., Tomolonis A., Miram L., Kheifets J., Martinez S., Carter A. Three day pleural inflammation: a new model to detect drug effects on macrophage accumulation. J Pharmacol Exp Ther. 1980 Dec;215(3):588–595. [PubMed] [Google Scholar]
  2. Agostoni E. Mechanics of the pleural space. Physiol Rev. 1972 Jan;52(1):57–128. doi: 10.1152/physrev.1972.52.1.57. [DOI] [PubMed] [Google Scholar]
  3. Baldwin G. C., Fleischmann J., Chung Y., Koyanagi Y., Chen I. S., Golde D. W. Human immunodeficiency virus causes mononuclear phagocyte dysfunction. Proc Natl Acad Sci U S A. 1990 May;87(10):3933–3937. doi: 10.1073/pnas.87.10.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barry B. E., Miller F. J., Crapo J. D. Effects of inhalation of 0.12 and 0.25 parts per million ozone on the proximal alveolar region of juvenile and adult rats. Lab Invest. 1985 Dec;53(6):692–704. [PubMed] [Google Scholar]
  5. Brain J. D., Bloom S. B., Valberg P. A., Gehr P. Correlation between the behavior of magnetic iron oxide particles in the lungs of rabbits and phagocytosis. Exp Lung Res. 1984;6(2):115–131. doi: 10.3109/01902148409087900. [DOI] [PubMed] [Google Scholar]
  6. Brain J. D., Gehr P., Kavet R. I. Airway macrophages. The importance of the fixation method. Am Rev Respir Dis. 1984 May;129(5):823–826. doi: 10.1164/arrd.1984.129.5.823. [DOI] [PubMed] [Google Scholar]
  7. Brain J. D. Lung macrophages: how many kinds are there? What do they do? Am Rev Respir Dis. 1988 Mar;137(3):507–509. doi: 10.1164/ajrccm/137.3.507. [DOI] [PubMed] [Google Scholar]
  8. Brain J. D. Toxicological aspects of alterations of pulmonary macrophage function. Annu Rev Pharmacol Toxicol. 1986;26:547–565. doi: 10.1146/annurev.pa.26.040186.002555. [DOI] [PubMed] [Google Scholar]
  9. Gendelman H. E., Orenstein J. M., Baca L. M., Weiser B., Burger H., Kalter D. C., Meltzer M. S. The macrophage in the persistence and pathogenesis of HIV infection. AIDS. 1989 Aug;3(8):475–495. doi: 10.1097/00002030-198908000-00001. [DOI] [PubMed] [Google Scholar]
  10. Godleski J. J., Mortara M., Joher M. A., Kobzik L., Brain J. D. Monoclonal antibody to an alveolar macrophage surface antigen in hamsters. Am Rev Respir Dis. 1984 Aug;130(2):249–255. doi: 10.1164/arrd.1984.130.2.249. [DOI] [PubMed] [Google Scholar]
  11. Holt P. G., Degebrodt A., Venaille T., O'Leary C., Krska K., Flexman J., Farrell H., Shellam G., Young P., Penhale J. Preparation of interstitial lung cells by enzymatic digestion of tissue slices: preliminary characterization by morphology and performance in functional assays. Immunology. 1985 Jan;54(1):139–147. [PMC free article] [PubMed] [Google Scholar]
  12. Kobzik L., Godleski J. J., Barry B. E., Brain J. D. Isolation and antigenic identification of hamster lung interstitial macrophages. Am Rev Respir Dis. 1988 Oct;138(4):908–914. doi: 10.1164/ajrccm/138.4.908. [DOI] [PubMed] [Google Scholar]
  13. Kobzik L., Godleski J. J., Brain J. D. Oxidative metabolism in the alveolar macrophage: analysis by flow cytometry. J Leukoc Biol. 1990 Apr;47(4):295–303. [PubMed] [Google Scholar]
  14. Kobzik L., Godleski J. J., Brain J. D. Selective down-regulation of alveolar macrophage oxidative response to opsonin-independent phagocytosis. J Immunol. 1990 Jun 1;144(11):4312–4319. [PubMed] [Google Scholar]
  15. Kreyling W. G., Godleski J. J., Kariya S. T., Rose R. M., Brain J. D. In vitro dissolution of uniform cobalt oxide particles by human and canine alveolar macrophages. Am J Respir Cell Mol Biol. 1990 May;2(5):413–422. doi: 10.1165/ajrcmb/2.5.413. [DOI] [PubMed] [Google Scholar]
  16. LAURENZI G. A., BERMAN L., FIRST M., KASS E. H. A QUANTITATIVE STUDY OF THE DEPOSITION AND CLEARANCE OF BACTERIA IN THE MURINE LUNG. J Clin Invest. 1964 Apr;43:759–768. doi: 10.1172/JCI104960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mann D. L., Gartner S., Le Sane F., Buchow H., Popovic M. HIV-1 transmission and function of virus-infected monocytes/macrophages. J Immunol. 1990 Mar 15;144(6):2152–2158. [PubMed] [Google Scholar]
  18. Pinkerton K. E., Barry B. E., O'Neil J. J., Raub J. A., Pratt P. C., Crapo J. D. Morphologic changes in the lung during the lifespan of Fischer 344 rats. Am J Anat. 1982 Jun;164(2):155–174. doi: 10.1002/aja.1001640206. [DOI] [PubMed] [Google Scholar]
  19. Sorokin S. P., Brain J. D. Pathways of clearance in mouse lungs exposed to iron oxide aerosols. Anat Rec. 1975 Mar;181(3):581–625. doi: 10.1002/ar.1091810304. [DOI] [PubMed] [Google Scholar]
  20. Thet L. A., Wrobel D. J., Crapo J. D., Shelburne J. D. Morphologic aspects of the protection by endotoxin against acute and chronic oxygen-induced lung injury in adult rats. Lab Invest. 1983 Apr;48(4):448–457. [PubMed] [Google Scholar]
  21. Warner A. E., Barry B. E., Brain J. D. Pulmonary intravascular macrophages in sheep. Morphology and function of a novel constituent of the mononuclear phagocyte system. Lab Invest. 1986 Sep;55(3):276–288. [PubMed] [Google Scholar]
  22. Warner A. E., DeCamp M. M., Jr, Molina R. M., Brain J. D. Pulmonary removal of circulating endotoxin results in acute lung injury in sheep. Lab Invest. 1988 Aug;59(2):219–230. [PubMed] [Google Scholar]
  23. Warner A. E., Molina R. M., Brain J. D. Uptake of bloodborne bacteria by pulmonary intravascular macrophages and consequent inflammatory responses in sheep. Am Rev Respir Dis. 1987 Sep;136(3):683–690. doi: 10.1164/ajrccm/136.3.683. [DOI] [PubMed] [Google Scholar]
  24. Warren J. S., Kunkel R. G., Johnson K. J., Ward P. A. Comparative O2-. responses of lung macrophages and blood phagocytic cells in the rat. Possible relevance to IgA immune complex induced lung injury. Lab Invest. 1987 Sep;57(3):311–320. [PubMed] [Google Scholar]
  25. Weinstock S. B., Brain J. D. Comparison of particle clearance and macrophage phagosomal motion in liver and lungs of rats. J Appl Physiol (1985) 1988 Oct;65(4):1811–1820. doi: 10.1152/jappl.1988.65.4.1811. [DOI] [PubMed] [Google Scholar]
  26. Zlotnik A., Vatter A., Hayes R. L., Blumenthal E., Crowle A. J. Mouse pleural macrophages: characterization and comparison with mouse alveolar and peritoneal macrophages. J Reticuloendothel Soc. 1982 Mar;31(3):207–220. [PubMed] [Google Scholar]
  27. van der Brugge-Gamelkoorn G. J., Dijkstra C. D., Sminia T. Characterization of pulmonary macrophages and bronchus-associated lymphoid tissue (BALT) macrophages in the rat. An enzyme-cytochemical and immunocytochemical study. Immunobiology. 1985 Jul;169(5):553–562. doi: 10.1016/S0171-2985(85)80009-7. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES