Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1993 Apr;100:21–30. doi: 10.1289/ehp.9310021

Asbestos-induced lung disease.

A R Brody 1
PMCID: PMC1519571  PMID: 8354168

Abstract

This review attempts to deal with two major questions concerning asbestos-induced lung disease: How does inhaled asbestos cause cell proliferation and fibrosis? and Will there continue to be risk from exposure to asbestos in schools and public buildings? The first is a scientific question that has spawned many interesting new experiments over the past 10 years, and there appear to be two hypothetical schemes which could explain, at least in part, the fibroproliferative effects of asbestos fibers. One supports the view that toxic oxygen radicals generated on fiber surfaces and/or intracellularly are the central mediators of disease. The second hypothesis is not mutually exclusive of the first, but, in my opinion, may be integral to it, i.e., the cellular injury induced by oxygen radicals stimulates the elaboration of multiple varieties of growth factors and cytokines that mediate the pathogenesis of asbestosis. There is increasing evidence that molecules such as platelet-derived growth factor and transforming growth factor beta, both synthesized and secreted by activated lung macrophages, are responsible, respectively, for the increased interstitial cell populations and extracellular matrix proteins that are the hallmarks of asbestos-induced fibrosis. The challenge today is to establish which combinations of the many factors released actually are playing a role in disease pathogenesis. The issue of continued risk currently is more a question of policy and perception than science because a sufficient database has not yet been established to allow full knowledge of the circumstances under which asbestos in buildings constitutes an ongoing health hazard. The litigious nature of this question does not help its resolution. In as much as public policy statements and risk assessment are not within my purview, I have focused on the state-of-the-art of asbestos as a complete carcinogen. It appears to be generally nongenotoxic, but all asbestos fiber types can induce chromosomal mutations and aneuploidy, perhaps through their ability to disrupt normal chromosome segregation.

Full text

PDF
21

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altree-Williams S., Preston J. S. Asbestos and other fibre levels in buildings. Ann Occup Hyg. 1985;29(3):357–363. doi: 10.1093/annhyg/29.3.357. [DOI] [PubMed] [Google Scholar]
  2. Antoniades H. N., Bravo M. A., Avila R. E., Galanopoulos T., Neville-Golden J., Maxwell M., Selman M. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest. 1990 Oct;86(4):1055–1064. doi: 10.1172/JCI114808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett J. C., Lamb P. W., Wiseman R. W. Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect. 1989 May;81:81–89. doi: 10.1289/ehp.898181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bates D. V. Asbestos: the turbulent interface between science and policy. CMAJ. 1991 Mar 1;144(5):554–556. [PMC free article] [PubMed] [Google Scholar]
  5. Bauman M. D., Jetten A. M., Bonner J. C., Kumar R. K., Bennett R. A., Brody A. R. Secretion of a platelet-derived growth factor homologue by rat alveolar macrophages exposed to particulates in vitro. Eur J Cell Biol. 1990 Apr;51(2):327–334. [PubMed] [Google Scholar]
  6. Becklake M. R. Exposure to asbestos and human disease. N Engl J Med. 1982 Jun 17;306(24):1480–1482. doi: 10.1056/NEJM198206173062409. [DOI] [PubMed] [Google Scholar]
  7. Bonner J. C., Osornio-Vargas A. R., Badgett A., Brody A. R. Differential proliferation of rat lung fibroblasts induced by the platelet-derived growth factor-AA, -AB, and -BB isoforms secreted by rat alveolar macrophages. Am J Respir Cell Mol Biol. 1991 Dec;5(6):539–547. doi: 10.1165/ajrcmb/5.6.539. [DOI] [PubMed] [Google Scholar]
  8. Bozelka B. E., Sestini P., Gaumer H. R., Hammad Y., Heather C. J., Salvaggio J. E. A murine model of asbestosis. Am J Pathol. 1983 Sep;112(3):326–337. [PMC free article] [PubMed] [Google Scholar]
  9. Brody A. R., George G., Hill L. H. Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid. Lab Invest. 1983 Oct;49(4):468–475. [PubMed] [Google Scholar]
  10. Brody A. R., Hill L. H., Adkins B., Jr, O'Connor R. W. Chrysotile asbestos inhalation in rats: deposition pattern and reaction of alveolar epithelium and pulmonary macrophages. Am Rev Respir Dis. 1981 Jun;123(6):670–679. doi: 10.1164/arrd.1981.123.6.670. [DOI] [PubMed] [Google Scholar]
  11. Brody A. R., Hill L. H. Interstitial accumulation of inhaled chrysotile asbestos fibers and consequent formation of microcalcifications. Am J Pathol. 1982 Oct;109(1):107–114. [PMC free article] [PubMed] [Google Scholar]
  12. Brody A. R., Overby L. H. Incorporation of tritiated thymidine by epithelial and interstitial cells in bronchiolar-alveolar regions of asbestos-exposed rats. Am J Pathol. 1989 Jan;134(1):133–140. [PMC free article] [PubMed] [Google Scholar]
  13. Brody A. R., Roe M. W. Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. Am Rev Respir Dis. 1983 Oct;128(4):724–729. doi: 10.1164/arrd.1983.128.4.724. [DOI] [PubMed] [Google Scholar]
  14. Chang L. Y., Overby L. H., Brody A. R., Crapo J. D. Progressive lung cell reactions and extracellular matrix production after a brief exposure to asbestos. Am J Pathol. 1988 Apr;131(1):156–170. [PMC free article] [PubMed] [Google Scholar]
  15. Cohen N. Regulation of in-place asbestos-containing material. Environ Res. 1991 Jun;55(1):97–106. doi: 10.1016/s0013-9351(05)80144-6. [DOI] [PubMed] [Google Scholar]
  16. Cohen S. M., Ellwein L. B. Cell proliferation in carcinogenesis. Science. 1990 Aug 31;249(4972):1007–1011. doi: 10.1126/science.2204108. [DOI] [PubMed] [Google Scholar]
  17. Coin P. G., Roggli V. L., Brody A. R. Deposition, clearance, and translocation of chrysotile asbestos from peripheral and central regions of the rat lung. Environ Res. 1992 Jun;58(1):97–116. doi: 10.1016/s0013-9351(05)80207-5. [DOI] [PubMed] [Google Scholar]
  18. Cole R. W., Ault J. G., Hayden J. H., Rieder C. L. Crocidolite asbestos fibers undergo size-dependent microtubule-mediated transport after endocytosis in vertebrate lung epithelial cells. Cancer Res. 1991 Sep 15;51(18):4942–4947. [PubMed] [Google Scholar]
  19. Craighead J. E., Abraham J. L., Churg A., Green F. H., Kleinerman J., Pratt P. C., Seemayer T. A., Vallyathan V., Weill H. The pathology of asbestos-associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema. Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health. Arch Pathol Lab Med. 1982 Oct 8;106(11):544–596. [PubMed] [Google Scholar]
  20. Craighead J. E., Mossman B. T. The pathogenesis of asbestos-associated diseases. N Engl J Med. 1982 Jun 17;306(24):1446–1455. doi: 10.1056/NEJM198206173062403. [DOI] [PubMed] [Google Scholar]
  21. Donaldson K., Slight J., Hannant D., Bolton R. E. Increased release of hydrogen peroxide and superoxide anion from asbestos-primed macrophages. Effect of hydrogen peroxide on the functional activity of alpha 1-protease inhibitor. Inflammation. 1985 Jun;9(2):139–147. doi: 10.1007/BF00917586. [DOI] [PubMed] [Google Scholar]
  22. Gallagher J. E., George G., Brody A. R. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes. Am Rev Respir Dis. 1987 Jun;135(6):1345–1352. doi: 10.1164/arrd.1987.135.6.1345. [DOI] [PubMed] [Google Scholar]
  23. Gibas Z., Li F. P., Antman K. H., Bernal S., Stahel R., Sandberg A. A. Chromosome changes in malignant mesothelioma. Cancer Genet Cytogenet. 1986 Feb 15;20(3-4):191–201. doi: 10.1016/0165-4608(86)90074-9. [DOI] [PubMed] [Google Scholar]
  24. Goodglick L. A., Pietras L. A., Kane A. B. Evaluation of the causal relationship between crocidolite asbestos-induced lipid peroxidation and toxicity to macrophages. Am Rev Respir Dis. 1989 May;139(5):1265–1273. doi: 10.1164/ajrccm/139.5.1265. [DOI] [PubMed] [Google Scholar]
  25. Hansen K., Mossman B. T. Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 1987 Mar 15;47(6):1681–1686. [PubMed] [Google Scholar]
  26. Hart C. E., Forstrom J. W., Kelly J. D., Seifert R. A., Smith R. A., Ross R., Murray M. J., Bowen-Pope D. F. Two classes of PDGF receptor recognize different isoforms of PDGF. Science. 1988 Jun 10;240(4858):1529–1531. doi: 10.1126/science.2836952. [DOI] [PubMed] [Google Scholar]
  27. Hesterberg T. W., Barrett J. C. Dependence of asbestos- and mineral dust-induced transformation of mammalian cells in culture on fiber dimension. Cancer Res. 1984 May;44(5):2170–2180. [PubMed] [Google Scholar]
  28. Hesterberg T. W., Barrett J. C. Induction by asbestos fibers of anaphase abnormalities: mechanism for aneuploidy induction and possibly carcinogenesis. Carcinogenesis. 1985 Mar;6(3):473–475. doi: 10.1093/carcin/6.3.473. [DOI] [PubMed] [Google Scholar]
  29. Hesterberg T. W., Butterick C. J., Oshimura M., Brody A. R., Barrett J. C. Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers. Cancer Res. 1986 Nov;46(11):5795–5802. [PubMed] [Google Scholar]
  30. Hjortsberg U., Orbaek P., Aborelius M., Jr, Ranstam J., Welinder H. Railroad workers with pleural plaques: I. Spirometric and nitrogen washout investigation on smoking and nonsmoking asbestos-exposed workers. Am J Ind Med. 1988;14(6):635–641. doi: 10.1002/ajim.4700140602. [DOI] [PubMed] [Google Scholar]
  31. Holian A., Jordan M. K., Nguyen H. V., Devenyi Z. J. Inhibition of macrophage activation by isoquinolinesulfonamides, phenothiazines, and a napthalenesulfonamide. J Cell Physiol. 1988 Oct;137(1):45–54. doi: 10.1002/jcp.1041370106. [DOI] [PubMed] [Google Scholar]
  32. Jaurand M. C., Kheuang L., Magne L., Bignon J. Chromosomal changes induced by chrysotile fibres or benzo-3,4-pyrene in rat pleural mesothelial cells. Mutat Res. 1986 Mar;169(3):141–148. doi: 10.1016/0165-1218(86)90093-5. [DOI] [PubMed] [Google Scholar]
  33. Kalter V. G., Brody A. R. Receptors for transforming growth factor-beta (TGF-beta) on rat lung fibroblasts have higher affinity for TGF-beta 1 than for TGF-beta 2. Am J Respir Cell Mol Biol. 1991 May;4(5):397–407. doi: 10.1165/ajrcmb/4.5.397. [DOI] [PubMed] [Google Scholar]
  34. Kelley J. Cytokines of the lung. Am Rev Respir Dis. 1990 Mar;141(3):765–788. doi: 10.1164/ajrccm/141.3.765. [DOI] [PubMed] [Google Scholar]
  35. Kouzan S., Gallagher J. E., Eling T., Brody A. R. Binding of iron beads to sialic acid residues on macrophage membranes stimulates arachidonic acid metabolism. Lab Invest. 1985 Sep;53(3):320–327. [PubMed] [Google Scholar]
  36. Kumar R. K., Bennett R. A., Brody A. R. A homologue of platelet-derived growth factor produced by rat alveolar macrophages. FASEB J. 1988 Apr;2(7):2272–2277. doi: 10.1096/fasebj.2.7.3280379. [DOI] [PubMed] [Google Scholar]
  37. Lechner J. F., Tokiwa T., LaVeck M., Benedict W. F., Banks-Schlegel S., Yeager H., Jr, Banerjee A., Harris C. C. Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3884–3888. doi: 10.1073/pnas.82.11.3884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mangum J. B., Everitt J. I., Bonner J. C., Moore L. R., Brody A. R. Co-culture of primary pulmonary cells to model alveolar injury and translocation of proteins. In Vitro Cell Dev Biol. 1990 Dec;26(12):1135–1143. doi: 10.1007/BF02623690. [DOI] [PubMed] [Google Scholar]
  39. McGavran P. D., Brody A. R. Chrysotile asbestos inhalation induces tritiated thymidine incorporation by epithelial cells of distal bronchioles. Am J Respir Cell Mol Biol. 1989 Sep;1(3):231–235. doi: 10.1165/ajrcmb/1.3.231. [DOI] [PubMed] [Google Scholar]
  40. McGavran P. D., Moore L. B., Brody A. R. Inhalation of chrysotile asbestos induces rapid cellular proliferation in small pulmonary vessels of mice and rats. Am J Pathol. 1990 Mar;136(3):695–705. [PMC free article] [PubMed] [Google Scholar]
  41. Meier B., Radeke H. H., Selle S., Younes M., Sies H., Resch K., Habermehl G. G. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J. 1989 Oct 15;263(2):539–545. doi: 10.1042/bj2630539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mossman B. T., Bignon J., Corn M., Seaton A., Gee J. B. Asbestos: scientific developments and implications for public policy. Science. 1990 Jan 19;247(4940):294–301. doi: 10.1126/science.2153315. [DOI] [PubMed] [Google Scholar]
  43. Mossman B. T., Marsh J. P., Sesko A., Hill S., Shatos M. A., Doherty J., Petruska J., Adler K. B., Hemenway D., Mickey R. Inhibition of lung injury, inflammation, and interstitial pulmonary fibrosis by polyethylene glycol-conjugated catalase in a rapid inhalation model of asbestosis. Am Rev Respir Dis. 1990 May;141(5 Pt 1):1266–1271. doi: 10.1164/ajrccm/141.5_Pt_1.1266. [DOI] [PubMed] [Google Scholar]
  44. Mossman B. T., Marsh J. P., Shatos M. A. Alteration of superoxide dismutase activity in tracheal epithelial cells by asbestos and inhibition of cytotoxicity by antioxidants. Lab Invest. 1986 Feb;54(2):204–212. [PubMed] [Google Scholar]
  45. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Oliver L. C., Sprince N. L., Greene R. Asbestos-related radiographic abnormalities in public school custodians. Toxicol Ind Health. 1990 Dec;6(6):629–636. [PubMed] [Google Scholar]
  47. Oshimura M., Hesterberg T. W., Barrett J. C. An early, nonrandom karyotypic change in immortal Syrian hamster cell lines transformed by asbestos: trisomy of chromosome 11. Cancer Genet Cytogenet. 1986 Jul;22(3):225–237. doi: 10.1016/0165-4608(86)90159-7. [DOI] [PubMed] [Google Scholar]
  48. Oshimura M., Hesterberg T. W., Tsutsui T., Barrett J. C. Correlation of asbestos-induced cytogenetic effects with cell transformation of Syrian hamster embryo cells in culture. Cancer Res. 1984 Nov;44(11):5017–5022. [PubMed] [Google Scholar]
  49. Pinkerton K. E., Brody A. R., Miller F. J., Crapo J. D. Exposure to low levels of ozone results in enhanced pulmonary retention of inhaled asbestos fibers. Am Rev Respir Dis. 1989 Oct;140(4):1075–1081. doi: 10.1164/ajrccm/140.4.1075. [DOI] [PubMed] [Google Scholar]
  50. Roggli V. L., Brody A. R. Changes in numbers and dimensions of chrysotile asbestos fibers in lungs of rats following short-term exposure. Exp Lung Res. 1984;7(2):133–147. doi: 10.3109/01902148409069674. [DOI] [PubMed] [Google Scholar]
  51. Rom W. N., Basset P., Fells G. A., Nukiwa T., Trapnell B. C., Crysal R. G. Alveolar macrophages release an insulin-like growth factor I-type molecule. J Clin Invest. 1988 Nov;82(5):1685–1693. doi: 10.1172/JCI113781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Roney P. L., Holian A. Possible mechanism of chrysotile asbestos-stimulated superoxide anion production in guinea pig alveolar macrophages. Toxicol Appl Pharmacol. 1989 Aug;100(1):132–144. doi: 10.1016/0041-008x(89)90097-5. [DOI] [PubMed] [Google Scholar]
  53. Ross R., Raines E. W., Bowen-Pope D. F. The biology of platelet-derived growth factor. Cell. 1986 Jul 18;46(2):155–169. doi: 10.1016/0092-8674(86)90733-6. [DOI] [PubMed] [Google Scholar]
  54. Schapira R. M., Osornio-Vargas A. R., Brody A. R. Inorganic particles induce secretion of a macrophage homologue of platelet-derived growth factor in a density-and time-dependent manner in vitro. Exp Lung Res. 1991 Nov-Dec;17(6):1011–1024. doi: 10.3109/01902149109064332. [DOI] [PubMed] [Google Scholar]
  55. Schwartz D. A. New developments in asbestos-induced pleural disease. Chest. 1991 Jan;99(1):191–198. doi: 10.1378/chest.99.1.191. [DOI] [PubMed] [Google Scholar]
  56. Seifert R. A., Hart C. E., Phillips P. E., Forstrom J. W., Ross R., Murray M. J., Bowen-Pope D. F. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J Biol Chem. 1989 May 25;264(15):8771–8778. [PubMed] [Google Scholar]
  57. Sesko A., Cabot M., Mossman B. Hydrolysis of inositol phospholipids precedes cellular proliferation in asbestos-stimulated tracheobronchial epithelial cells. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7385–7389. doi: 10.1073/pnas.87.19.7385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Shimokado K., Raines E. W., Madtes D. K., Barrett T. B., Benditt E. P., Ross R. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell. 1985 Nov;43(1):277–286. doi: 10.1016/0092-8674(85)90033-9. [DOI] [PubMed] [Google Scholar]
  59. Stenman G., Olofsson K., Månsson T., Hagmar B., Mark J. Chromosomes and chromosomal evolution in human mesotheliomas as reflected in sequential analyses of two cases. Hereditas. 1986;105(2):233–239. doi: 10.1111/j.1601-5223.1986.tb00667.x. [DOI] [PubMed] [Google Scholar]
  60. Tetley T. D., Hext P. M., Richards R. J., McDermott M. Chrysotile-induced asbestosis: changes in the free cell population, pulmonary surfactant and whole lung tissue of rats. Br J Exp Pathol. 1976 Oct;57(5):505–514. [PMC free article] [PubMed] [Google Scholar]
  61. Velonakis E. G., Tsorva A., Tzonou A., Trichopoulos D. Asbestos-related chest X-ray changes among Greek merchant marine seamen. Am J Ind Med. 1989;15(5):511–516. doi: 10.1002/ajim.4700150504. [DOI] [PubMed] [Google Scholar]
  62. Wagner J. C., Berry G., Skidmore J. W., Timbrell V. The effects of the inhalation of asbestos in rats. Br J Cancer. 1974 Mar;29(3):252–269. doi: 10.1038/bjc.1974.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Warheit D. B., Hill L. H., George G., Brody A. R. Time course of chemotactic factor generation and the corresponding macrophage response to asbestos inhalation. Am Rev Respir Dis. 1986 Jul;134(1):128–133. doi: 10.1164/arrd.1986.134.1.128. [DOI] [PubMed] [Google Scholar]
  64. Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys. 1984 Jan;228(1):373–376. doi: 10.1016/0003-9861(84)90078-x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES