Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1993 Apr;100:9–20. doi: 10.1289/ehp.931009

Mechanisms of multistep carcinogenesis and carcinogen risk assessment.

J C Barrett 1
PMCID: PMC1519586  PMID: 8354184

Abstract

Many different types of chemical exposures can increase the incidence of tumors in animals and humans, but usually a long period of time is required before the carcinogenic risk of an exposure is manifested. Both of these observations can be explained by a multistep/multigene model of carcinogenesis. In this model, a normal cell evolves into a cancer cell as the result of heritable changes in multiple, independent genes. The two-stage model of initiation and promotion for chemical carcinogenesis has provided a paradigm by which chemicals can act by qualitatively different mechanisms, but the process of carcinogenesis is now recognized as more complex than simply initiation and promotion. Even a three-stage model of initiation, promotion, and progression, which can be operationally defined, is not adequate to describe the carcinogenic process. The number of genes altered in a cancer cell compared to a normal cell is not known; recent evidence suggests that 3-10 genetic events are involved in common adult malignancies in humans. Two distinct classes of genes, protooncogenes and tumor-suppressor genes, are involved in the cancer process. Multiple oncogenes may be activated in a tumor, while multiple tumor-suppressor genes may be inactivated. Identification of the genes involved in carcinogenesis and elucidation of the mechanisms of their activation or inactivation allows a better understanding of how chemical carcinogens influence the process of neoplastic evolution. The findings of multiple genetic changes (including point mutations, chromosomal translocations, deletions, gene amplification, and numerical chromosome changes) in activated protooncogenes and inactivated tumor-suppressor genes provide experimental support for Boveri's somatic mutation theory of carcinogenesis. In addition to mutagenic mechanisms, chemicals may heritably alter cells by epigenetic mechanisms and enhance the clonal expansion of altered cells. Most chemical carcinogens operate via a combination of mechanisms, and even their primary mechanism of action may vary depending on the target tissues. The classification of chemicals by mechanism of action or by nongenotoxic or genotoxic activity has certain inherent difficulties because no classification of chemicals is exhaustive or definitive.

Full text

PDF
9

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldaz C. M., Conti C. J., Klein-Szanto A. J., Slaga T. J. Progressive dysplasia and aneuploidy are hallmarks of mouse skin papillomas: relevance to malignancy. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2029–2032. doi: 10.1073/pnas.84.7.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashby J., Tennant R. W., Zeiger E., Stasiewicz S. Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program. Mutat Res. 1989 Jun;223(2):73–103. doi: 10.1016/0165-1218(89)90037-2. [DOI] [PubMed] [Google Scholar]
  3. BARONI C., VAN ESCHG, SAFFIOTTI U. CARCINOGENESIS TESTS OF TWO INORGANIC ARSENICALS. Arch Environ Health. 1963 Dec;7:668–674. doi: 10.1080/00039896.1963.10663598. [DOI] [PubMed] [Google Scholar]
  4. Barrett J. C., Hesterberg T. W., Oshimura M., Tsutsui T. Role of chemically induced mutagenic events in neoplastic transformation of Syrian hamster embryo cells. Carcinog Compr Surv. 1985;9:123–137. [PubMed] [Google Scholar]
  5. Barrett J. C., Hesterberg T. W., Thomassen D. G. Use of cell transformation systems for carcinogenicity testing and mechanistic studies of carcinogenesis. Pharmacol Rev. 1984 Jun;36(2 Suppl):53S–70S. [PubMed] [Google Scholar]
  6. Barrett J. C., Huff J. Cellular and molecular mechanisms of chemically induced renal carcinogenesis. Ren Fail. 1991;13(4):211–225. doi: 10.3109/08860229109022157. [DOI] [PubMed] [Google Scholar]
  7. Barrett J. C., Lamb P. W., Wiseman R. W. Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect. 1989 May;81:81–89. doi: 10.1289/ehp.898181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barrett J. C., Wiseman R. W. Cellular and molecular mechanisms of multistep carcinogenesis: relevance to carcinogen risk assessment. Environ Health Perspect. 1987 Dec;76:65–70. doi: 10.1289/ehp.877665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barrett J. C., Wong A., McLachlan J. A. Diethylstilbestrol induces neoplastic transformation without measurable gene mutation at two loci. Science. 1981 Jun 19;212(4501):1402–1404. doi: 10.1126/science.6262919. [DOI] [PubMed] [Google Scholar]
  10. Bishop J. M. The molecular genetics of cancer. Science. 1987 Jan 16;235(4786):305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  11. Boutwell R. K. The function and mechanism of promoters of carcinogenesis. CRC Crit Rev Toxicol. 1974 Jan;2(4):419–443. doi: 10.3109/10408447309025704. [DOI] [PubMed] [Google Scholar]
  12. Boyd J. A., Barrett J. C. Genetic and cellular basis of multistep carcinogenesis. Pharmacol Ther. 1990;46(3):469–486. doi: 10.1016/0163-7258(90)90028-z. [DOI] [PubMed] [Google Scholar]
  13. Brodeur G. M., Seeger R. C., Schwab M., Varmus H. E., Bishop J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984 Jun 8;224(4653):1121–1124. doi: 10.1126/science.6719137. [DOI] [PubMed] [Google Scholar]
  14. Brown C. C., Chu K. C. Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. J Natl Cancer Inst. 1983 Mar;70(3):455–463. [PubMed] [Google Scholar]
  15. Burns F., Albert R., Altshuler B., Morris E. Approach to risk assessment for genotoxic carcinogens based on data from the mouse skin initiation-promotion model. Environ Health Perspect. 1983 Apr;50:309–320. doi: 10.1289/ehp.8350309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Callahan R., Campbell G. Mutations in human breast cancer: an overview. J Natl Cancer Inst. 1989 Dec 6;81(23):1780–1786. doi: 10.1093/jnci/81.23.1780. [DOI] [PubMed] [Google Scholar]
  17. Conti C. J., Aldaz C. M., O'Connell J., Klein-Szanto A. J., Slaga T. J. Aneuploidy, an early event in mouse skin tumor development. Carcinogenesis. 1986 Nov;7(11):1845–1848. doi: 10.1093/carcin/7.11.1845. [DOI] [PubMed] [Google Scholar]
  18. Dotto G. P., Weinberg R. A., Ariza A. Malignant transformation of mouse primary keratinocytes by Harvey sarcoma virus and its modulation by surrounding normal cells. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6389–6393. doi: 10.1073/pnas.85.17.6389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  20. Forsberg J. G. Developmental mechanism of estrogen-induced irreversible changes in the mouse cervicovaginal epithelium. Natl Cancer Inst Monogr. 1979 May;(51):41–56. [PubMed] [Google Scholar]
  21. Fujiki H., Suganuma M., Matsukura N., Sugimura T., Takayama S. Teleocidin from Streptomyces is a potent promoter of mouse skin carcinogenesis. Carcinogenesis. 1982;3(8):895–898. doi: 10.1093/carcin/3.8.895. [DOI] [PubMed] [Google Scholar]
  22. Hennings H., Shores R., Mitchell P., Spangler E. F., Yuspa S. H. Induction of papillomas with a high probability of conversion to malignancy. Carcinogenesis. 1985 Nov;6(11):1607–1610. doi: 10.1093/carcin/6.11.1607. [DOI] [PubMed] [Google Scholar]
  23. Hennings H., Shores R., Wenk M. L., Spangler E. F., Tarone R., Yuspa S. H. Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature. 1983 Jul 7;304(5921):67–69. doi: 10.1038/304067a0. [DOI] [PubMed] [Google Scholar]
  24. Herbst A. L., Poskanzer D. C., Robboy S. J., Friedlander L., Scully R. E. Prenatal exposure to stilbestrol. A prospective comparison of exposed female offspring with unexposed controls. N Engl J Med. 1975 Feb 13;292(7):334–339. doi: 10.1056/NEJM197502132920704. [DOI] [PubMed] [Google Scholar]
  25. Hesterberg T. W., Barrett J. C. Dependence of asbestos- and mineral dust-induced transformation of mammalian cells in culture on fiber dimension. Cancer Res. 1984 May;44(5):2170–2180. [PubMed] [Google Scholar]
  26. Hesterberg T. W., Barrett J. C. Induction by asbestos fibers of anaphase abnormalities: mechanism for aneuploidy induction and possibly carcinogenesis. Carcinogenesis. 1985 Mar;6(3):473–475. doi: 10.1093/carcin/6.3.473. [DOI] [PubMed] [Google Scholar]
  27. Hoel D. G., Haseman J. K., Hogan M. D., Huff J., McConnell E. E. The impact of toxicity on carcinogenicity studies: implications for risk assessment. Carcinogenesis. 1988 Nov;9(11):2045–2052. doi: 10.1093/carcin/9.11.2045. [DOI] [PubMed] [Google Scholar]
  28. Huff J. E., Haseman J. K., DeMarini D. M., Eustis S., Maronpot R. R., Peters A. C., Persing R. L., Chrisp C. E., Jacobs A. C. Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3F1 mice. Environ Health Perspect. 1989 Jul;82:125–163. doi: 10.1289/ehp.8982125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ishinishi N., Yamamoto A., Hisanaga A., Inamasu T. Tumorigenicity of arsenic trioxide to the lung in Syrian golden hamsters by intermittent instillations. Cancer Lett. 1983 Dec;21(2):141–147. doi: 10.1016/0304-3835(83)90200-8. [DOI] [PubMed] [Google Scholar]
  30. Ishinishi N., Yamamoto A., Hisanaga A., Inamasu T. Tumorigenicity of arsenic trioxide to the lung in Syrian golden hamsters by intermittent instillations. Cancer Lett. 1983 Dec;21(2):141–147. doi: 10.1016/0304-3835(83)90200-8. [DOI] [PubMed] [Google Scholar]
  31. Jaurand M. C. Particulate-state carcinogenesis: a survey of recent studies on the mechanisms of action of fibres. IARC Sci Publ. 1989;(90):54–73. [PubMed] [Google Scholar]
  32. Ledda-Columbano G. M., Columbano A., Curto M., Ennas M. G., Coni P., Sarma D. S., Pani P. Further evidence that mitogen-induced cell proliferation does not support the formation of enzyme-altered islands in rat liver by carcinogens. Carcinogenesis. 1989 May;10(5):847–850. doi: 10.1093/carcin/10.5.847. [DOI] [PubMed] [Google Scholar]
  33. Lee T. C., Oshimura M., Barrett J. C. Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis. 1985 Oct;6(10):1421–1426. doi: 10.1093/carcin/6.10.1421. [DOI] [PubMed] [Google Scholar]
  34. Lee T. C., Tanaka N., Lamb P. W., Gilmer T. M., Barrett J. C. Induction of gene amplification by arsenic. Science. 1988 Jul 1;241(4861):79–81. doi: 10.1126/science.3388020. [DOI] [PubMed] [Google Scholar]
  35. Liehr J. G. 2-Fluoroestradiol. Separation of estrogenicity from carcinogenicity. Mol Pharmacol. 1983 Mar;23(2):278–281. [PubMed] [Google Scholar]
  36. Loeb L. A. Endogenous carcinogenesis: molecular oncology into the twenty-first century--presidential address. Cancer Res. 1989 Oct 15;49(20):5489–5496. [PubMed] [Google Scholar]
  37. McLachlan J. A., Wong A., Degen G. H., Barrett J. C. Morphologic and neoplastic transformation of Syrian hamster embryo fibroblasts by diethylstilbestrol and its analogs. Cancer Res. 1982 Aug;42(8):3040–3045. [PubMed] [Google Scholar]
  38. Melnick R. L. An alternative hypothesis on the role of chemically induced protein droplet (alpha 2u-globulin) nephropathy in renal carcinogenesis. Regul Toxicol Pharmacol. 1992 Oct;16(2):111–125. doi: 10.1016/0273-2300(92)90052-b. [DOI] [PubMed] [Google Scholar]
  39. Mossman B. T., Marsh J. P. Evidence supporting a role for active oxygen species in asbestos-induced toxicity and lung disease. Environ Health Perspect. 1989 May;81:91–94. doi: 10.1289/ehp.898191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. O'Connell J. F., Klein-Szanto A. J., DiGiovanni D. M., Fries J. W., Slaga T. J. Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide. Cancer Res. 1986 Jun;46(6):2863–2865. [PubMed] [Google Scholar]
  41. O'Connell J. F., Klein-Szanto A. J., Digiovanni D. M., Fries J. W., Slaga T. J. Malignant progression of mouse skin papillomas treated with ethylnitrosourea, N-methyl-N'-nitro-N-nitrosoguanidine, or 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett. 1986 Mar;30(3):269–274. doi: 10.1016/0304-3835(86)90051-0. [DOI] [PubMed] [Google Scholar]
  42. Oshimura M., Barrett J. C. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer. Environ Mutagen. 1986;8(1):129–159. doi: 10.1002/em.2860080112. [DOI] [PubMed] [Google Scholar]
  43. Oshimura M., Hesterberg T. W., Barrett J. C. An early, nonrandom karyotypic change in immortal Syrian hamster cell lines transformed by asbestos: trisomy of chromosome 11. Cancer Genet Cytogenet. 1986 Jul;22(3):225–237. doi: 10.1016/0165-4608(86)90159-7. [DOI] [PubMed] [Google Scholar]
  44. Oshimura M., Hesterberg T. W., Tsutsui T., Barrett J. C. Correlation of asbestos-induced cytogenetic effects with cell transformation of Syrian hamster embryo cells in culture. Cancer Res. 1984 Nov;44(11):5017–5022. [PubMed] [Google Scholar]
  45. Pershagen G., Nordberg G., Björklund N. E. Carcinomas of the respiratory tract in hamsters given arsenic trioxide and/or benzo[a]pyrene by the pulmonary route. Environ Res. 1984 Aug;34(2):227–241. doi: 10.1016/0013-9351(84)90091-4. [DOI] [PubMed] [Google Scholar]
  46. Pitot H. C., Goldsworthy T., Moran S. The natural history of carcinogenesis: implications of experimental carcinogenesis in the genesis of human cancer. J Supramol Struct Cell Biochem. 1981;17(2):133–146. doi: 10.1002/jsscb.380170204. [DOI] [PubMed] [Google Scholar]
  47. Potter V. R. A new protocol and its rationale for the study of initiation and promotion of carcinogenesis in rat liver. Carcinogenesis. 1981;2(12):1375–1379. doi: 10.1093/carcin/2.12.1375. [DOI] [PubMed] [Google Scholar]
  48. Preston-Martin S., Pike M. C., Ross R. K., Jones P. A., Henderson B. E. Increased cell division as a cause of human cancer. Cancer Res. 1990 Dec 1;50(23):7415–7421. [PubMed] [Google Scholar]
  49. Quintanilla M., Brown K., Ramsden M., Balmain A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature. 1986 Jul 3;322(6074):78–80. doi: 10.1038/322078a0. [DOI] [PubMed] [Google Scholar]
  50. Reynolds S. H., Stowers S. J., Patterson R. M., Maronpot R. R., Aaronson S. A., Anderson M. W. Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science. 1987 Sep 11;237(4820):1309–1316. doi: 10.1126/science.3629242. [DOI] [PubMed] [Google Scholar]
  51. SHUBIK P. The growth potentialities of induced skin tumors in mice; the effects of different methods of chemical carcinogenesis. Cancer Res. 1950 Nov;10(11):713–717. [PubMed] [Google Scholar]
  52. Sato Y., Murai T., Tsumuraya M., Saitô H., Kodama M. Disruptive effect of diethylstilbestrol on microtubules. Gan. 1984 Dec;75(12):1046–1048. [PubMed] [Google Scholar]
  53. Schwab M., Ellison J., Busch M., Rosenau W., Varmus H. E., Bishop J. M. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4940–4944. doi: 10.1073/pnas.81.15.4940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Scribner J. D., Scribner N. K., McKnight B., Mottet N. K. Evidence for a new model of tumor progression from carcinogenesis and tumor promotion studies with 7-bromomethylbenz[a]anthracene. Cancer Res. 1983 May;43(5):2034–2041. [PubMed] [Google Scholar]
  55. Sharp D. C., Parry J. M. Diethylstilboestrol: the binding and effects of diethylstilboestrol upon the polymerisation and depolymerisation of purified microtubule protein in vitro. Carcinogenesis. 1985 Jun;6(6):865–871. doi: 10.1093/carcin/6.6.865. [DOI] [PubMed] [Google Scholar]
  56. Shelby M. D. The genetic toxicity of human carcinogens and its implications. Mutat Res. 1988 Jan;204(1):3–15. doi: 10.1016/0165-1218(88)90113-9. [DOI] [PubMed] [Google Scholar]
  57. Shelby M. D., Zeiger E. Activity of human carcinogens in the Salmonella and rodent bone-marrow cytogenetics tests. Mutat Res. 1990 Jun-Aug;234(3-4):257–261. doi: 10.1016/0165-1161(90)90022-g. [DOI] [PubMed] [Google Scholar]
  58. Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., McGuire W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177–182. doi: 10.1126/science.3798106. [DOI] [PubMed] [Google Scholar]
  59. Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. J., Stuart S. G., Udove J., Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989 May 12;244(4905):707–712. doi: 10.1126/science.2470152. [DOI] [PubMed] [Google Scholar]
  60. Sugawara O., Oshimura M., Koi M., Annab L. A., Barrett J. C. Induction of cellular senescence in immortalized cells by human chromosome 1. Science. 1990 Feb 9;247(4943):707–710. doi: 10.1126/science.2300822. [DOI] [PubMed] [Google Scholar]
  61. Toman Z., Dambly C., Radman M. Induction of a stable, heritable epigenetic change by mutagenic carcinogens: a new test system. IARC Sci Publ. 1980;(27):243–255. [PubMed] [Google Scholar]
  62. Topping D. C., Nettesheim P. Two-stage carcinogenesis studies with asbestos in Fischer 344 rats. J Natl Cancer Inst. 1980 Sep;65(3):627–630. [PubMed] [Google Scholar]
  63. Tsutsui T., Degen G. H., Schiffmann D., Wong A., Maizumi H., McLachlan J. A., Barrett J. C. Dependence on exogenous metabolic activation for induction of unscheduled DNA synthesis in Syrian hamster embryo cells by diethylstilbestrol and related compounds. Cancer Res. 1984 Jan;44(1):184–189. [PubMed] [Google Scholar]
  64. Tsutsui T., Maizumi H., Barrett J. C. Amitrole-induced cell transformation and gene mutations in Syrian hamster embryo cells in culture. Mutat Res. 1984 Aug;140(4):205–207. doi: 10.1016/0165-7992(84)90078-2. [DOI] [PubMed] [Google Scholar]
  65. Tsutsui T., Maizumi H., McLachlan J. A., Barrett J. C. Aneuploidy induction and cell transformation by diethylstilbestrol: a possible chromosomal mechanism in carcinogenesis. Cancer Res. 1983 Aug;43(8):3814–3821. [PubMed] [Google Scholar]
  66. Tucker R. W., Barrett J. C. Deceased numbers of spindle and cytoplasmic microtubules in hamster embryo cells treated with a carcinogen, diethylstilbestrol. Cancer Res. 1986 Apr;46(4 Pt 2):2088–2095. [PubMed] [Google Scholar]
  67. Vesselinovitch S. D., Rao K. V., Mihailovich N. Neoplastic response of mouse tissues during perinatal age periods and its significance in chemical carcinogenesis. Natl Cancer Inst Monogr. 1979 May;(51):239–250. [PubMed] [Google Scholar]
  68. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  69. Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989 Apr 14;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
  70. Walker C., Everitt J., Barrett J. C. Possible cellular and molecular mechanisms for asbestos carcinogenicity. Am J Ind Med. 1992;21(2):253–273. doi: 10.1002/ajim.4700210214. [DOI] [PubMed] [Google Scholar]
  71. Weinberg R. A. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 1989 Jul 15;49(14):3713–3721. [PubMed] [Google Scholar]
  72. Weinberg R. A. The action of oncogenes in the cytoplasm and nucleus. Science. 1985 Nov 15;230(4727):770–776. doi: 10.1126/science.2997917. [DOI] [PubMed] [Google Scholar]
  73. Weisburger J. H., Williams G. M. Carcinogen testing: current problems and new approaches. Science. 1981 Oct 23;214(4519):401–407. doi: 10.1126/science.7291981. [DOI] [PubMed] [Google Scholar]
  74. Weston A., Willey J. C., Modali R., Sugimura H., McDowell E. M., Resau J., Light B., Haugen A., Mann D. L., Trump B. F. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5099–5103. doi: 10.1073/pnas.86.13.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Wiseman R. W., Stowers S. J., Miller E. C., Anderson M. W., Miller J. A. Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3 F1 mouse. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5825–5829. doi: 10.1073/pnas.83.16.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Zarbl H., Sukumar S., Arthur A. V., Martin-Zanca D., Barbacid M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. 1985 May 30-Jun 5Nature. 315(6018):382–385. doi: 10.1038/315382a0. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES