Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1993 Dec;101(Suppl 4):93–100. doi: 10.1289/ehp.93101s493

Biologically based epidemiological studies of electric power and cancer.

R G Stevens 1
PMCID: PMC1519711  PMID: 8206047

Abstract

As societies industrialize, the health profile of the population changes; in general, acute infectious disease declines and chronic disease increases. Use of electricity is a hallmark of the industrialization process, but there has been no suspicion that electricity could increase the risk of cancer. Recently, however, a number of epidemiologic studies have suggested that electromagnetic fields (EMF) may do just that. Although few cancer experiments have been done yet, there are a number of biological effects of EMF reported in the literature that might provide bases for designing cancer experiments and epidemiologic studies. These include effects of EMF on: a) DNA transcription and translation, b) calcium balance in cells, and c) pineal production of melatonin. Alterations in DNA transcription and translation could have pleiotropic effects. Disruption of calcium homeostasis has many implications including oncogene activation, promotional activity via protein kinases and ornithine decarboxylase (ODC), and increasing oxidative stress. Reduction of melatonin suggests a possible increased risk of cancers of hormone-dependent tissues such as breast and prostate. The idea that a cancer-causing agent must either be an initiator or a promoter should be discarded; indeed, the phenomenologic meaning of these two terms has become confused with imputed mechanistic necessity in recent years. Agents that affect division of normal cells or of fully transformed cells can play an important role in clinical cancer development quite apart from initiation or promotion.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
93

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adey W. R. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion. Environ Health Perspect. 1990 Jun;86:297–305. doi: 10.1289/ehp.9086297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balcer-Kubiczek E. K., Harrison G. H. Neoplastic transformation of C3H/10T1/2 cells following exposure to 120-Hz modulated 2.45-GHz microwaves and phorbol ester tumor promoter. Radiat Res. 1991 Apr;126(1):65–72. [PubMed] [Google Scholar]
  3. Bawin S. M., Adey W. R. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1999–2003. doi: 10.1073/pnas.73.6.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beniashvili D. S., Bilanishvili V. G., Menabde M. Z. Low-frequency electromagnetic radiation enhances the induction of rat mammary tumors by nitrosomethyl urea. Cancer Lett. 1991 Dec 9;61(1):75–79. doi: 10.1016/0304-3835(91)90079-w. [DOI] [PubMed] [Google Scholar]
  5. Byus C. V., Pieper S. E., Adey W. R. The effects of low-energy 60-Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis. 1987 Oct;8(10):1385–1389. doi: 10.1093/carcin/8.10.1385. [DOI] [PubMed] [Google Scholar]
  6. Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
  7. Cohen M., Lippman M., Chabner B. Role of pineal gland in aetiology and treatment of breast cancer. Lancet. 1978 Oct 14;2(8094):814–816. doi: 10.1016/s0140-6736(78)92591-6. [DOI] [PubMed] [Google Scholar]
  8. Davis R. L., Milham S., Jr Altered immune status in aluminum reduction plant workers. Am J Ind Med. 1990;18(1):79–85. doi: 10.1002/ajim.4700180109. [DOI] [PubMed] [Google Scholar]
  9. Doll R., Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981 Jun;66(6):1191–1308. [PubMed] [Google Scholar]
  10. Frazier M. E., Reese J. A., Morris J. E., Jostes R. F., Miller D. L. Exposure of mammalian cells to 60-Hz magnetic or electric fields: analysis of DNA repair of induced, single-strand breaks. Bioelectromagnetics. 1990;11(3):229–234. doi: 10.1002/bem.2250110304. [DOI] [PubMed] [Google Scholar]
  11. Goodman R., Abbott J., Henderson A. S. Transcriptional patterns in the X chromosome of Sciara coprophila following exposure to magnetic fields. Bioelectromagnetics. 1987;8(1):1–7. doi: 10.1002/bem.2250080102. [DOI] [PubMed] [Google Scholar]
  12. Goodman R., Bassett C. A., Henderson A. S. Pulsing electromagnetic fields induce cellular transcription. Science. 1983 Jun 17;220(4603):1283–1285. doi: 10.1126/science.6857248. [DOI] [PubMed] [Google Scholar]
  13. Goodman R., Shirley-Henderson A. Exposure of cells to extremely low-frequency electromagnetic fields: relationship to malignancy? Cancer Cells. 1990 Nov;2(11):355–359. [PubMed] [Google Scholar]
  14. Gutman M., Cnaan A., Inbar M., Shafir R., Chaitchik S., Rozin R. R., Klausner J. M. Are malignant melanoma patients at higher risk for a second cancer? Cancer. 1991 Aug 1;68(3):660–665. doi: 10.1002/1097-0142(19910801)68:3<660::aid-cncr2820680337>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  15. Hennings H., Shores R., Wenk M. L., Spangler E. F., Tarone R., Yuspa S. H. Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature. 1983 Jul 7;304(5921):67–69. doi: 10.1038/304067a0. [DOI] [PubMed] [Google Scholar]
  16. Hill S. M., Blask D. E. Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res. 1988 Nov 1;48(21):6121–6126. [PubMed] [Google Scholar]
  17. Johnston R. B., Jr, Keele B. B., Jr, Misra H. P., Lehmeyer J. E., Webb L. S., Baehner R. L., RaJagopalan K. V. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest. 1975 Jun;55(6):1357–1372. doi: 10.1172/JCI108055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kato M., Honma K., Shigemitsu T., Shiga Y. Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics. 1993;14(2):97–106. doi: 10.1002/bem.2250140203. [DOI] [PubMed] [Google Scholar]
  19. Knudson A. G., Jr Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 1985 Apr;45(4):1437–1443. [PubMed] [Google Scholar]
  20. Lerchl A., Nonaka K. O., Reiter R. J. Pineal gland "magnetosensitivity" to static magnetic fields is a consequence of induced electric currents (eddy currents). J Pineal Res. 1991 Apr;10(3):109–116. doi: 10.1111/j.1600-079x.1991.tb00826.x. [DOI] [PubMed] [Google Scholar]
  21. Lerchl A., Nonaka K. O., Stokkan K. A., Reiter R. J. Marked rapid alterations in nocturnal pineal serotonin metabolism in mice and rats exposed to weak intermittent magnetic fields. Biochem Biophys Res Commun. 1990 May 31;169(1):102–108. doi: 10.1016/0006-291x(90)91439-y. [DOI] [PubMed] [Google Scholar]
  22. Liburdy R. P., Sloma T. R., Sokolic R., Yaswen P. ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin's oncostatic action on ER+ breast cancer cell proliferation. J Pineal Res. 1993 Mar;14(2):89–97. doi: 10.1111/j.1600-079x.1993.tb00491.x. [DOI] [PubMed] [Google Scholar]
  23. Luben R. A., Cain C. D., Chen M. C., Rosen D. M., Adey W. R. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4180–4184. doi: 10.1073/pnas.79.13.4180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lyle D. B., Ayotte R. D., Sheppard A. R., Adey W. R. Suppression of T-lymphocyte cytotoxicity following exposure to 60-Hz sinusoidal electric fields. Bioelectromagnetics. 1988;9(3):303–313. doi: 10.1002/bem.2250090311. [DOI] [PubMed] [Google Scholar]
  25. Lyle D. B., Schechter P., Adey W. R., Lundak R. L. Suppression of T-lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics. 1983;4(3):281–292. doi: 10.1002/bem.2250040308. [DOI] [PubMed] [Google Scholar]
  26. Lyle D. B., Wang X. H., Ayotte R. D., Sheppard A. R., Adey W. R. Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics. 1991;12(3):145–156. doi: 10.1002/bem.2250120303. [DOI] [PubMed] [Google Scholar]
  27. MacMahon B., Cole P., Brown J. Etiology of human breast cancer: a review. J Natl Cancer Inst. 1973 Jan;50(1):21–42. doi: 10.1093/jnci/50.1.21. [DOI] [PubMed] [Google Scholar]
  28. Mevissen M., Stamm A., Buntenkötter S., Zwingelberg R., Wahnschaffe U., Löscher W. Effects of magnetic fields on mammary tumor development induced by 7,12-dimethylbenz(a)anthracene in rats. Bioelectromagnetics. 1993;14(2):131–143. doi: 10.1002/bem.2250140206. [DOI] [PubMed] [Google Scholar]
  29. Moolgavkar S. H., Day N. E., Stevens R. G. Two-stage model for carcinogenesis: Epidemiology of breast cancer in females. J Natl Cancer Inst. 1980 Sep;65(3):559–569. [PubMed] [Google Scholar]
  30. Moolgavkar S. H., Knudson A. G., Jr Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst. 1981 Jun;66(6):1037–1052. doi: 10.1093/jnci/66.6.1037. [DOI] [PubMed] [Google Scholar]
  31. Morgan J. I., Curran T. Role of ion flux in the control of c-fos expression. Nature. 1986 Aug 7;322(6079):552–555. doi: 10.1038/322552a0. [DOI] [PubMed] [Google Scholar]
  32. Narita T., Kudo H. Effect of melatonin on B16 melanoma growth in athymic mice. Cancer Res. 1985 Sep;45(9):4175–4177. [PubMed] [Google Scholar]
  33. Nicotera P., Bellomo G., Orrenius S. The role of Ca2+ in cell killing. Chem Res Toxicol. 1990 Nov-Dec;3(6):484–494. doi: 10.1021/tx00018a001. [DOI] [PubMed] [Google Scholar]
  34. Oller A. R., Rastogi P., Morgenthaler S., Thilly W. G. A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. Mutat Res. 1989 Jun;216(3):149–161. doi: 10.1016/0165-1161(89)90001-0. [DOI] [PubMed] [Google Scholar]
  35. Papatheofanis F. J. Use of calcium channel antagonists as magnetoprotective agents. Radiat Res. 1990 Apr;122(1):24–28. [PubMed] [Google Scholar]
  36. Phillips J. L., Rutledge L., Winters W. D. Transferrin binding to two human colon carcinoma cell lines: characterization and effect of 60-Hz electromagnetic fields. Cancer Res. 1986 Jan;46(1):239–244. [PubMed] [Google Scholar]
  37. Philo R., Berkowitz A. S. Inhibition of Dunning tumor growth by melatonin. J Urol. 1988 May;139(5):1099–1102. doi: 10.1016/s0022-5347(17)42795-9. [DOI] [PubMed] [Google Scholar]
  38. Pitot H. C., Dragan Y. P. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J. 1991 Jun;5(9):2280–2286. [PubMed] [Google Scholar]
  39. Reed D. J., Fariss M. W. Glutathione depletion and susceptibility. Pharmacol Rev. 1984 Jun;36(2 Suppl):25S–33S. [PubMed] [Google Scholar]
  40. Reese J. A., Frazier M. E., Morris J. E., Buschbom R. L., Miller D. L. Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics. 1991;12(1):21–25. doi: 10.1002/bem.2250120104. [DOI] [PubMed] [Google Scholar]
  41. Reese J. A., Jostes R. F., Frazier M. E. Exposure of mammalian cells to 60-Hz magnetic or electric fields: analysis for DNA single-strand breaks. Bioelectromagnetics. 1988;9(3):237–247. doi: 10.1002/bem.2250090305. [DOI] [PubMed] [Google Scholar]
  42. Reiter R. J., Anderson L. E., Buschbom R. L., Wilson B. W. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth. Life Sci. 1988;42(22):2203–2206. doi: 10.1016/0024-3205(88)90371-2. [DOI] [PubMed] [Google Scholar]
  43. Reiter R. J. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol. 1991 Aug;79(1-3):C153–C158. doi: 10.1016/0303-7207(91)90087-9. [DOI] [PubMed] [Google Scholar]
  44. Reuss S., Olcese J. Magnetic field effects on the rat pineal gland: role of retinal activation by light. Neurosci Lett. 1986 Feb 14;64(1):97–101. doi: 10.1016/0304-3940(86)90670-1. [DOI] [PubMed] [Google Scholar]
  45. Savitz D. A., Calle E. E. Leukemia and occupational exposure to electromagnetic fields: review of epidemiologic surveys. J Occup Med. 1987 Jan;29(1):47–51. [PubMed] [Google Scholar]
  46. Sawyer D. W., Sullivan J. A., Mandell G. L. Intracellular free calcium localization in neutrophils during phagocytosis. Science. 1985 Nov 8;230(4726):663–666. doi: 10.1126/science.4048951. [DOI] [PubMed] [Google Scholar]
  47. Severson R. K., Stevens R. G., Kaune W. T., Thomas D. B., Heuser L., Davis S., Sever L. E. Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields. Am J Epidemiol. 1988 Jul;128(1):10–20. doi: 10.1093/oxfordjournals.aje.a114932. [DOI] [PubMed] [Google Scholar]
  48. Smith M. T., Thor H., Orrenius S. Toxic injury to isolated hepatocytes is not dependent on extracellular calcium. Science. 1981 Sep 11;213(4513):1257–1259. doi: 10.1126/science.7268433. [DOI] [PubMed] [Google Scholar]
  49. Smith S. D., McLeod B. R., Liboff A. R., Cooksey K. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics. 1987;8(3):215–227. doi: 10.1002/bem.2250080302. [DOI] [PubMed] [Google Scholar]
  50. Stevens R. G., Davis S., Thomas D. B., Anderson L. E., Wilson B. W. Electric power, pineal function, and the risk of breast cancer. FASEB J. 1992 Feb 1;6(3):853–860. doi: 10.1096/fasebj.6.3.1740235. [DOI] [PubMed] [Google Scholar]
  51. Stevens R. G. Electric power use and breast cancer: a hypothesis. Am J Epidemiol. 1987 Apr;125(4):556–561. doi: 10.1093/oxfordjournals.aje.a114569. [DOI] [PubMed] [Google Scholar]
  52. Stevens R. G., Jones D. Y., Micozzi M. S., Taylor P. R. Body iron stores and the risk of cancer. N Engl J Med. 1988 Oct 20;319(16):1047–1052. doi: 10.1056/NEJM198810203191603. [DOI] [PubMed] [Google Scholar]
  53. Stevens R. G., Kalkwarf D. R. Iron, radiation, and cancer. Environ Health Perspect. 1990 Jul;87:291–300. doi: 10.1289/ehp.9087291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tamarkin L., Baird C. J., Almeida O. F. Melatonin: a coordinating signal for mammalian reproduction? Science. 1985 Feb 15;227(4688):714–720. doi: 10.1126/science.3881822. [DOI] [PubMed] [Google Scholar]
  55. Tamarkin L., Cohen M., Roselle D., Reichert C., Lippman M., Chabner B. Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res. 1981 Nov;41(11 Pt 1):4432–4436. [PubMed] [Google Scholar]
  56. Tenforde T. S., Kaune W. T. Interaction of extremely low frequency electric and magnetic fields with humans. Health Phys. 1987 Dec;53(6):585–606. doi: 10.1097/00004032-198712000-00002. [DOI] [PubMed] [Google Scholar]
  57. WURTMAN R. J., AXELROD J. THE PINEAL GLAND. Sci Am. 1965 Jul;213:50–60. doi: 10.1038/scientificamerican0765-50. [DOI] [PubMed] [Google Scholar]
  58. Wagner S., Green M. R. Retinoblastoma. A transcriptional tryst. Nature. 1991 Jul 18;352(6332):189–190. doi: 10.1038/352189a0. [DOI] [PubMed] [Google Scholar]
  59. Wainscoat J. S., Fey M. F. Assessment of clonality in human tumors: a review. Cancer Res. 1990 Mar 1;50(5):1355–1360. [PubMed] [Google Scholar]
  60. Weaver J. C., Astumian R. D. The response of living cells to very weak electric fields: the thermal noise limit. Science. 1990 Jan 26;247(4941):459–462. doi: 10.1126/science.2300806. [DOI] [PubMed] [Google Scholar]
  61. Welker H. A., Semm P., Willig R. P., Commentz J. C., Wiltschko W., Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Exp Brain Res. 1983;50(2-3):426–432. doi: 10.1007/BF00239209. [DOI] [PubMed] [Google Scholar]
  62. Wertheimer N., Leeper E. Adult cancer related to electrical wires near the home. Int J Epidemiol. 1982 Dec;11(4):345–355. doi: 10.1093/ije/11.4.345. [DOI] [PubMed] [Google Scholar]
  63. Wertheimer N., Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 1979 Mar;109(3):273–284. doi: 10.1093/oxfordjournals.aje.a112681. [DOI] [PubMed] [Google Scholar]
  64. Wilson B. W., Anderson L. E., Hilton D. I., Phillips R. D. Chronic exposure to 60-Hz electric fields: effects on pineal function in the rat. Bioelectromagnetics. 1981;2(4):371–380. doi: 10.1002/bem.2250020408. [DOI] [PubMed] [Google Scholar]
  65. Young J. D., Cohn Z. A. Cell-mediated killing: a common mechanism? Cell. 1986 Aug 29;46(5):641–642. doi: 10.1016/0092-8674(86)90336-3. [DOI] [PubMed] [Google Scholar]
  66. el Nahas S. M., Oraby H. A. Micronuclei formation in somatic cells of mice exposed to 50-Hz electric fields. Environ Mol Mutagen. 1989;13(2):107–111. doi: 10.1002/em.2850130204. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES