Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1993 Oct;101(Suppl 3):213–218. doi: 10.1289/ehp.93101s3213

Quantitative and molecular analyses of genetic risk: a study with ionizing radiation.

A W Hsie 1, Z Xu 1, Y Yu 1, J An 1, M L Meltz 1, J L Schwartz 1, P Hrelia 1
PMCID: PMC1521114  PMID: 8143620

Abstract

Mammalian cells in culture have been used to study the genetic effects of physical and chemical agents. We have used Chinese hamster ovary (CHO) cells, clone K1-BH4, to quantify mutations at the X-linked, large (35 kb) hypoxanthine-guanine phosphoribosyltransferase (hprt) locus (the CHO/HPRT assay) induced by environmental agents. By transfecting an hprt-deletion mutant CHO cell line with the plasmid vector pSV2gpt, we isolated a transformant, AS52. AS52 cells carry a single functional copy of an autosomal, small (456 bp) xanthine-guanine phosphoribosyltransferase (gpt) gene (the bacterial equivalent of the mammalian hprt gene; AS52/GPT assay). We found that ionizing radiations such as X-rays and neutrons and oxidative genotoxic chemicals such as Adriamycin, bleomycin, hydrogen peroxide, and potassium superoxide are much more mutagenic to the gpt gene in AS52 cells than to the hprt locus in K1-BH4 cells. The hypermutability of the gpt gene probably results from a higher recovery of multilocus deletion mutants in AS52 cells than in K1-BH4 cells, rather than a higher yield of induced mutants. These results demonstrate that the use of the hprt locus alone could lead to an underestimate of the genetic risk of these agents. Analyses of the mutation spectrum using a polymerase chain reaction-based deletion screening and DNA sequencing procedure showed that a high proportion of HPRT- and GPT- mutants induced by X-rays carry deletion mutations. Thus, both the mutant frequency and mutation spectrum need to be considered in assessing the genetic risk of ionizing radiation and oxidative genotoxic chemicals.

Full text

PDF
213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeMarini D. M., Brockman H. E., de Serres F. J., Evans H. H., Stankowski L. F., Jr, Hsie A. W. Specific-locus mutations induced in eukaryotes (especially mammalian cells) by radiation and chemicals: a perspective. Mutat Res. 1989 Jan;220(1):11–29. doi: 10.1016/0165-1110(89)90006-7. [DOI] [PubMed] [Google Scholar]
  2. Floyd R. A. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 1990 Jun;4(9):2587–2597. [PubMed] [Google Scholar]
  3. Hsie A. W., Brimer P. A., Mitchell T. J., Gosslee D. G. The dose-response relationship for ethyl methanesulfonate-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells. Somatic Cell Genet. 1975 Jul;1(3):247–261. doi: 10.1007/BF01538449. [DOI] [PubMed] [Google Scholar]
  4. Hsie A. W., Brimer P. A., Mitchell T. J., Gosslee D. G. The dose-response relationship for ultraviolet-light-induced mutations at the hypoxanthine-guanine phosphoribosyltransferase locus in Chinese hamster ovary cells. Somatic Cell Genet. 1975 Oct;1(4):383–389. doi: 10.1007/BF01538669. [DOI] [PubMed] [Google Scholar]
  5. Hsie A. W., Casciano D. A., Couch D. B., Krahn D. F., O'Neill J. P., Whitfield B. L. The use of Chinese hamster ovary cells to quantify specific locus mutation and to determine mutagenicity of chemicals. A report of the gene-tox program. Mutat Res. 1981 Mar;86(2):193–214. doi: 10.1016/0165-1110(81)90024-5. [DOI] [PubMed] [Google Scholar]
  6. Hsie A. W., O'Neill J. P., Couch D. B., SanSebastian J. R., Brimer P. A., Machanoff R., Fuscoe J. C., Riddle J. C., Li A. P., Forbes N. L. Quantitative analyses of radiation- and chemical-induced lethality and mutagenesis in Chinese hamster ovary cells. Radiat Res. 1978 Dec;76(3):471–492. [PubMed] [Google Scholar]
  7. Hsie A. W., Recio L., Katz D. S., Lee C. Q., Wagner M., Schenley R. L. Evidence for reactive oxygen species inducing mutations in mammalian cells. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9616–9620. doi: 10.1073/pnas.83.24.9616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hsie A. W., Xu Z. D., Yu Y. J., Sognier M. A., Hrelia P. Molecular analysis of reactive oxygen-species-induced mammalian gene mutation. Teratog Carcinog Mutagen. 1990;10(2):115–124. doi: 10.1002/tcm.1770100207. [DOI] [PubMed] [Google Scholar]
  9. Muller H. J. ARTIFICIAL TRANSMUTATION OF THE GENE. Science. 1927 Jul 22;66(1699):84–87. doi: 10.1126/science.66.1699.84. [DOI] [PubMed] [Google Scholar]
  10. O'Neill J. P., Brimer P. A., Machanoff R., Hirsch G. P., Hsie A. W. A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): development and definition of the system. Mutat Res. 1977 Oct;45(1):91–101. doi: 10.1016/0027-5107(77)90047-1. [DOI] [PubMed] [Google Scholar]
  11. O'Neill J. P., Couch D. B., Machanoff R., San Sebastian J. R., Brimer P. A., Hsie A. W. A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): utilization with a variety of mutagenic agents. Mutat Res. 1977 Oct;45(1):103–109. doi: 10.1016/0027-5107(77)90048-3. [DOI] [PubMed] [Google Scholar]
  12. Stankowski L. F., Jr, Hsie A. W. Quantitative and molecular analyses of radiation-induced mutation in AS52 cells. Radiat Res. 1986 Jan;105(1):37–48. [PubMed] [Google Scholar]
  13. Stankowski L. F., Jr, Tindall K. R., Hsie A. W. Quantitative and molecular analyses of ethyl methanesulfonate- and ICR 191-induced mutation in AS52 cells. Mutat Res. 1986 Apr;160(2):133–147. doi: 10.1016/0027-5107(86)90037-0. [DOI] [PubMed] [Google Scholar]
  14. Tindall K. R., Stankowski L. F., Jr, Machanoff R., Hsie A. W. Analyses of mutation in pSV2gpt-transformed CHO cells. Mutat Res. 1986 Apr;160(2):121–131. doi: 10.1016/0027-5107(86)90036-9. [DOI] [PubMed] [Google Scholar]
  15. Tindall K. R., Stankowski L. F., Jr, Machanoff R., Hsie A. W. Detection of deletion mutations in pSV2gpt-transformed cells. Mol Cell Biol. 1984 Jul;4(7):1411–1415. doi: 10.1128/mcb.4.7.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tindall K. R., Stankowski L. F., Jr Molecular analysis of spontaneous mutations at the gpt locus in Chinese hamster ovary (AS52) cells. Mutat Res. 1989 Mar-May;220(2-3):241–253. doi: 10.1016/0165-1110(89)90028-6. [DOI] [PubMed] [Google Scholar]
  17. Yu Y. J., Xu Z., Gibbs R. A., Hsie A. W. Polymerase chain reaction-based comprehensive procedure for the analysis of the mutation spectrum at the hypoxanthine-guanine phosphoribosyltransferase locus in Chinese hamster cells. Environ Mol Mutagen. 1992;19(4):267–273. doi: 10.1002/em.2850190402. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES