Abstract
Because of the potential environmental impact of pesticides and the large population potentially exposed, the effects of chronic exposure to pesticides need to be determined. Mutagenicity studies have been used to identify specific agents as potential carcinogens or other human health hazards. However, short-term tests are only theoretically correlated to carcinogenesis because their end points can measure only the genotoxic potential of chemicals, i.e., their activities as initiating agents in multistep carcinogenesis. The objective of our research presented here is to provide a comprehensive examination of the mechanism of toxicity of a series of pesticides. These are substances for which toxicity, at both the genetic and metabolic level, has not been adequately described. Preliminary results on a broad series of compounds belonging to different biological classes (herbicide, insecticide, fungicide) seem to indicate that pesticides are toxic but are poor initiating agents, as shown by negative or weak positive results on different genetic end points (gene mutations, DNA effects, and chromosome aberrations in vitro and in vivo). Immunochemical and biochemical studies, however, seem to indicate the cocarcinogenic and promoting potential of these chemicals. As an example, the genotoxic and biochemical effects induced by Fenarimol (a fungicide) are discussed. The results reported stress the importance of identifying chemicals that act at different levels of the multistep carcinogenesis process to ascertain the risk associated with exposure.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Au W. W., Cantelli-Forti G., Hrelia P., Legator M. S. Cytogenetic assays in genotoxic studies: somatic cell effects of benzene and germinal cell effects of dibromochloropropane. Teratog Carcinog Mutagen. 1990;10(2):125–134. doi: 10.1002/tcm.1770100208. [DOI] [PubMed] [Google Scholar]
- Bellincampi D., Gualandi G., la Monica E., Poley C., Morpurgo G. P. Membrane-damaging agents cause mitotic non-disjunction in Aspergillus nidulans. Mutat Res. 1980 Oct;79(2):169–172. doi: 10.1016/0165-1218(80)90085-3. [DOI] [PubMed] [Google Scholar]
- Carere A., Benigni R. Strategies and governmental regulations. Teratog Carcinog Mutagen. 1990;10(2):199–208. doi: 10.1002/tcm.1770100214. [DOI] [PubMed] [Google Scholar]
- Diwan B. A., Rice J. M., Nims R. W., Lubet R. A., Hu H., Ward J. M. P-450 enzyme induction by 5-ethyl-5-phenylhydantoin and 5,5-diethylhydantoin, analogues of barbiturate tumor promoters phenobarbital and barbital, and promotion of liver and thyroid carcinogenesis initiated by N-nitrosodiethylamine in rats. Cancer Res. 1988 May 1;48(9):2492–2497. [PubMed] [Google Scholar]
- Farber E. Cancer development and its natural history. A cancer prevention perspective. Cancer. 1988 Oct 15;62(8 Suppl):1676–1679. doi: 10.1002/1097-0142(19881015)62:1+<1676::aid-cncr2820621303>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Farber E. Clonal adaptation during carcinogenesis. Biochem Pharmacol. 1990 Jun 15;39(12):1837–1846. doi: 10.1016/0006-2952(90)90599-g. [DOI] [PubMed] [Google Scholar]
- Harper B. L., Morris D. L. Implications of multiple mechanisms of carcinogenesis for short-term testing. Teratog Carcinog Mutagen. 1984;4(6):483–503. doi: 10.1002/tcm.1770040604. [DOI] [PubMed] [Google Scholar]
- Hrelia P., Morotti M., Scotti M., Vigagni F., Paolini M., Perocco P., Cantelli Forti G. Genotoxic risk associated with pesticides: evidences on short-term tests. Pharmacol Res. 1990 Sep-Oct;22 (Suppl 3):93–94. doi: 10.1016/s1043-6618(09)80047-9. [DOI] [PubMed] [Google Scholar]
- Lans M., de Gerlache J., Taper H. S., Préat V., Roberfroid M. B. Phenobarbital as a promoter in the initiation/selection process of experimental rat hepatocarcinogenesis. Carcinogenesis. 1983;4(2):141–144. doi: 10.1093/carcin/4.2.141. [DOI] [PubMed] [Google Scholar]
- Legator M. S., Ward J. B., Jr Use of in vivo genetic toxicity data for risk assessment. Mutat Res. 1991 Sep-Oct;250(1-2):457–465. doi: 10.1016/0027-5107(91)90202-y. [DOI] [PubMed] [Google Scholar]
- Leonard T. B., Dent J. G., Graichen M. E., Lyght O., Popp J. A. Comparison of hepatic carcinogen initiation-promotion systems. Carcinogenesis. 1982;3(8):851–856. doi: 10.1093/carcin/3.8.851. [DOI] [PubMed] [Google Scholar]
- Paolini M., Biagi G. L., Bauer C., Cantelli-Forti G. On the nature of non-genotoxic carcinogens. A unified theory including NGCs, co-carcinogens and promoters. Mutat Res. 1992 Apr;281(4):245–246. doi: 10.1016/0165-7992(92)90016-b. [DOI] [PubMed] [Google Scholar]
- Paolini M., Sapigni E., Hrelia P., Scotti M., Morotti M., Cantelli-Forti G. Wide spectrum detection of precarcinogens in short-term bioassays by simultaneous superinduction of multiple forms of cytochrome P450 isoenzymes. Carcinogenesis. 1991 May;12(5):759–766. doi: 10.1093/carcin/12.5.759. [DOI] [PubMed] [Google Scholar]
- Perocco P., Santucci M. A., Gasperi Campani A., Forti G. C. Toxic and DNA-damaging activities of the fungicides mancozeb and thiram (TMTD) on human lymphocytes in vitro. Teratog Carcinog Mutagen. 1989;9(2):75–81. doi: 10.1002/tcm.1770090203. [DOI] [PubMed] [Google Scholar]
- Preston R. J., Au W., Bender M. A., Brewen J. G., Carrano A. V., Heddle J. A., McFee A. F., Wolff S., Wassom J. S. Mammalian in vivo and in vitro cytogenetic assays: a report of the U.S. EPA's gene-tox program. Mutat Res. 1981 Sep;87(2):143–188. doi: 10.1016/0165-1110(81)90030-0. [DOI] [PubMed] [Google Scholar]
- Schmid W. The micronucleus test. Mutat Res. 1975 Feb;31(1):9–15. doi: 10.1016/0165-1161(75)90058-8. [DOI] [PubMed] [Google Scholar]
- Schulte-Hermann R. Tumor promotion in the liver. Arch Toxicol. 1985 Aug;57(3):147–158. doi: 10.1007/BF00290879. [DOI] [PubMed] [Google Scholar]
- Selig C., Schlegelmilch R., Wolf H. U. Development of a method to increase the proportion of polychromatic erythrocytes from mouse bone marrow for more rapid evaluation of the micronucleus assay. Comparison with the conventional method with respect to micronucleus frequency and time required for preparation and evaluation. Mutat Res. 1990 Feb;234(1):23–30. doi: 10.1016/0165-1161(90)90027-l. [DOI] [PubMed] [Google Scholar]
- Tennant R. W. Issues in biochemical applications to risk assessment: are short-term tests predictive of in vivo tumorigenicity? Environ Health Perspect. 1987 Dec;76:163–167. doi: 10.1289/ehp.8776163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tinwell H., Ashby J. Comparison of acridine orange and Giemsa stains in several mouse bone marrow micronucleus assays--including a triple dose study. Mutagenesis. 1989 Nov;4(6):476–481. doi: 10.1093/mutage/4.6.476. [DOI] [PubMed] [Google Scholar]
- Zeiger E. Carcinogenicity of mutagens: predictive capability of the Salmonella mutagenesis assay for rodent carcinogenicity. Cancer Res. 1987 Mar 1;47(5):1287–1296. [PubMed] [Google Scholar]
- Zeiger E., Tennant R. W. Mutagenesis, clastogenesis, carcinogenesis: expectations, correlations and relations. Prog Clin Biol Res. 1986;209B:75–84. [PubMed] [Google Scholar]
