Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Jan;106(1):33–39. doi: 10.1289/ehp.9810633

Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure.

T W Gebel 1, R H Suchenwirth 1, C Bolten 1, H H Dunkelberg 1
PMCID: PMC1532944  PMID: 9417766

Abstract

Part of the northern Palatinate region in Germany is characterized by elevated levels of arsenic and antimony in the soil due to the presence of ore sources and former mining activities. In a biomonitoring study, 218 residents were investigated for a putative increased intake of these elements. Seventy-six nonexposed subjects in a rural region in south lower Saxony were chosen as the reference group. Urine and scalp hair samples were obtained as surrogates to determine the internal exposures to arsenic and antimony. The analyses were performed using graphite furnace atomic absorption spectrometry except for arsenic in urine, which was determined by the hydride technique. This method does not detect organoarsenicals from seafood, which are not toxicologically relevant. In the northern Palatinate subjects, slightly elevated arsenic contents in urine and scalp hair (presumably not hazardous) could be correlated with an increased arsenic content in the soil. On the other hand, the results did not show a correlation between the antimony contents in the soil of the housing area and those in urine and hair. Except for antimony in scalp hair, age tended to be associated with internal exposures to arsenic and antimony in both study groups. Consumption of seafood had a slight impact on the level of urinary arsenic, which is indicative of the presence of low quantities of inorganic arsenicals and dimethylarsinic acid in seafood. The arsenic and antimony contents in scalp hair were positively correlated with the 24-hr arsenic excretion in urine. However, antimony in scalp hair was not correlated with seafood consumption as was arsenic in scalp hair and in urine. This indicated the existence of unidentified common pathways of exposure contributing to the alimentary body burden. Short time peaks in the 24-hr excretion of arsenic in urine, which could not be assigned to a high consumption of seafood, were detected for six study participants. This suggests that additional factors relevant in the exposure to arsenic are still unidentified.

Full text

PDF
33

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki S., Aono H. Effects of water restriction and water loading on daily urinary excretion of heavy metals and organic substances in metal workers. Br J Ind Med. 1989 Jun;46(6):389–392. doi: 10.1136/oem.46.6.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arbouine M. W., Wilson H. K. The effect of seafood consumption on the assessment of occupational exposure to arsenic by urinary arsenic speciation measurements. J Trace Elem Electrolytes Health Dis. 1992 Sep;6(3):153–160. [PubMed] [Google Scholar]
  3. Bailly R., Lauwerys R., Buchet J. P., Mahieu P., Konings J. Experimental and human studies on antimony metabolism: their relevance for the biological monitoring of workers exposed to inorganic antimony. Br J Ind Med. 1991 Feb;48(2):93–97. doi: 10.1136/oem.48.2.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bencko V. Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology. 1995 Jul 26;101(1-2):29–39. doi: 10.1016/0300-483x(95)03018-b. [DOI] [PubMed] [Google Scholar]
  5. Binder S., Forney D., Kaye W., Paschal D. Arsenic exposure in children living near a former copper smelter. Bull Environ Contam Toxicol. 1987 Jul;39(1):114–121. doi: 10.1007/BF01691798. [DOI] [PubMed] [Google Scholar]
  6. Boeniger M. F., Lowry L. K., Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993 Oct;54(10):615–627. doi: 10.1080/15298669391355134. [DOI] [PubMed] [Google Scholar]
  7. Buchet J. P., Lauwerys R., Roels H. Comparison of several methods for the determination of arsenic compounds in water and in urine. Their application for the study of arsenic metabolism and for the monitoring of workers exposed to arsenic. Int Arch Occup Environ Health. 1980;46(1):11–29. doi: 10.1007/BF00377456. [DOI] [PubMed] [Google Scholar]
  8. Buchet J. P., Pauwels J., Lauwerys R. Assessment of exposure to inorganic arsenic following ingestion of marine organisms by volunteers. Environ Res. 1994 Jul;66(1):44–51. doi: 10.1006/enrs.1994.1043. [DOI] [PubMed] [Google Scholar]
  9. Buchet J. P., Staessen J., Roels H., Lauwerys R., Fagard R. Geographical and temporal differences in the urinary excretion of inorganic arsenic: a Belgian population study. Occup Environ Med. 1996 May;53(5):320–327. doi: 10.1136/oem.53.5.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen C. J., Chuang Y. C., Lin T. M., Wu H. Y. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res. 1985 Nov;45(11 Pt 2):5895–5899. [PubMed] [Google Scholar]
  11. Chen C. J., Kuo T. L., Wu M. M. Arsenic and cancers. Lancet. 1988 Feb 20;1(8582):414–415. doi: 10.1016/s0140-6736(88)91207-x. [DOI] [PubMed] [Google Scholar]
  12. Chittleborough G. A chemist's view of the analysis of human hair for trace elements. Sci Total Environ. 1980 Jan;14(1):53–75. doi: 10.1016/0048-9697(80)90126-6. [DOI] [PubMed] [Google Scholar]
  13. Crecelius E. A. Changes in the chemical speciation of arsenic following ingestion by man. Environ Health Perspect. 1977 Aug;19:147–150. doi: 10.1289/ehp.7719147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Das D., Chatterjee A., Mandal B. K., Samanta G., Chakraborti D., Chanda B. Arsenic in ground water in six districts of West bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst. 1995 Mar;120(3):917–924. doi: 10.1039/an9952000917. [DOI] [PubMed] [Google Scholar]
  15. Dieter M. P., Jameson C. W., Elwell M. R., Lodge J. W., Hejtmancik M., Grumbein S. L., Ryan M., Peters A. C. Comparative toxicity and tissue distribution of antimony potassium tartrate in rats and mice dosed by drinking water or intraperitoneal injection. J Toxicol Environ Health. 1991 Sep;34(1):51–82. doi: 10.1080/15287399109531548. [DOI] [PubMed] [Google Scholar]
  16. Díaz-Barriga F., Santos M. A., Mejía J. J., Batres L., Yáez L., Carrizales L., Vera E., del Razo L. M., Cebrián M. E. Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosí, Mexico. Environ Res. 1993 Aug;62(2):242–250. doi: 10.1006/enrs.1993.1109. [DOI] [PubMed] [Google Scholar]
  17. Enterline P. E., Day R., Marsh G. M. Cancers related to exposure to arsenic at a copper smelter. Occup Environ Med. 1995 Jan;52(1):28–32. doi: 10.1136/oem.52.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Foà V., Colombi A., Maroni M., Buratti M., Calzaferri G. The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic. Sci Total Environ. 1984 Mar 15;34(3):241–259. doi: 10.1016/0048-9697(84)90066-4. [DOI] [PubMed] [Google Scholar]
  19. Gebel T., Christensen S., Dunkelberg H. Comparative and environmental genotoxicity of antimony and arsenic. Anticancer Res. 1997 Jul-Aug;17(4A):2603–2607. [PubMed] [Google Scholar]
  20. Gebel T., Kevekordes S., Schaefer J., von Platen H., Dunkelberg H. Assessment of a possible genotoxic environmental risk in sheep bred on grounds with strongly elevated contents of mercury, arsenic and antimony. Mutat Res. 1996 Jul 5;368(3-4):267–274. doi: 10.1016/s0165-1218(96)90068-3. [DOI] [PubMed] [Google Scholar]
  21. Gerhardsson L., Brune D., Nordberg G. F., Wester P. O. Antimony in lung, liver and kidney tissue from deceased smelter workers. Scand J Work Environ Health. 1982 Sep;8(3):201–208. doi: 10.5271/sjweh.2475. [DOI] [PubMed] [Google Scholar]
  22. Groth D. H., Stettler L. E., Burg J. R., Busey W. M., Grant G. C., Wong L. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats. J Toxicol Environ Health. 1986;18(4):607–626. doi: 10.1080/15287398609530898. [DOI] [PubMed] [Google Scholar]
  23. Hewitt D. J., Millner G. C., Nye A. C., Simmons H. F. Investigation of arsenic exposure from soil at a superfund site. Environ Res. 1995 Feb;68(2):73–81. doi: 10.1006/enrs.1995.1010. [DOI] [PubMed] [Google Scholar]
  24. Hopenhayn-Rich C., Biggs M. L., Smith A. H., Kalman D. A., Moore L. E. Methylation study of a population environmentally exposed to arsenic in drinking water. Environ Health Perspect. 1996 Jun;104(6):620–628. doi: 10.1289/ehp.96104620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones R. D. Survey of antimony workers: mortality 1961-1992. Occup Environ Med. 1994 Nov;51(11):772–776. doi: 10.1136/oem.51.11.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kentner M., Leinemann M., Schaller K. H., Weltle D., Lehnert G. External and internal antimony exposure in starter battery production. Int Arch Occup Environ Health. 1995;67(2):119–123. doi: 10.1007/BF00572235. [DOI] [PubMed] [Google Scholar]
  27. Kuroda K., Endo G., Okamoto A., Yoo Y. S., Horiguchi S. Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutat Res. 1991 Dec;264(4):163–170. doi: 10.1016/0165-7992(91)90072-c. [DOI] [PubMed] [Google Scholar]
  28. Lauwers L. F., Roelants A., Rosseel P. M., Heyndrickx B., Baute L. Oral antimony intoxications in man. Crit Care Med. 1990 Mar;18(3):324–326. doi: 10.1097/00003246-199003000-00017. [DOI] [PubMed] [Google Scholar]
  29. Lerda D. Sister-chromatid exchange (SCE) among individuals chronically exposed to arsenic in drinking water. Mutat Res. 1994 Apr;312(2):111–120. doi: 10.1016/0165-1161(94)90015-9. [DOI] [PubMed] [Google Scholar]
  30. Lunde G. Occurrence and transformation of arsenic in the marine environment. Environ Health Perspect. 1977 Aug;19:47–52. doi: 10.1289/ehp.771947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lüchtrath H. The consequences of chronic arsenic poisoning among Moselle wine growers. Pathoanatomical investigations of post-mortem examinations performed between 1960 and 1977. J Cancer Res Clin Oncol. 1983;105(2):173–182. doi: 10.1007/BF00406929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lüdersdorf R., Fuchs A., Mayer P., Skulsuksai G., Schäcke G. Biological assessment of exposure to antimony and lead in the glass-producing industry. Int Arch Occup Environ Health. 1987;59(5):469–474. doi: 10.1007/BF00377841. [DOI] [PubMed] [Google Scholar]
  33. Minoia C., Sabbioni E., Apostoli P., Pietra R., Pozzoli L., Gallorini M., Nicolaou G., Alessio L., Capodaglio E. Trace element reference values in tissues from inhabitants of the European community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci Total Environ. 1990 Jun;95:89–105. doi: 10.1016/0048-9697(90)90055-y. [DOI] [PubMed] [Google Scholar]
  34. Moore L. E., Warner M. L., Smith A. H., Kalman D., Smith M. T. Use of the fluorescent micronucleus assay to detect the genotoxic effects of radiation and arsenic exposure in exfoliated human epithelial cells. Environ Mol Mutagen. 1996;27(3):176–184. doi: 10.1002/(SICI)1098-2280(1996)27:3<176::AID-EM2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  35. Munro I. C. Naturally occurring toxicants in foods and their significance. Clin Toxicol. 1976;9(5):647–663. doi: 10.3109/15563657608988173. [DOI] [PubMed] [Google Scholar]
  36. Newton P. E., Bolte H. F., Daly I. W., Pillsbury B. D., Terrill J. B., Drew R. T., Ben-Dyke R., Sheldon A. W., Rubin L. F. Subchronic and chronic inhalation toxicity of antimony trioxide in the rat. Fundam Appl Toxicol. 1994 May;22(4):561–576. doi: 10.1006/faat.1994.1063. [DOI] [PubMed] [Google Scholar]
  37. Ott M. G., Holder B. B., Gordon H. L. Respiratory cancer and occupational exposure to arsenicals. Arch Environ Health. 1974 Nov;29(5):250–255. doi: 10.1080/00039896.1974.10666582. [DOI] [PubMed] [Google Scholar]
  38. Pershagen G. Lung cancer mortality among men living near an arsenic-emitting smelter. Am J Epidemiol. 1985 Oct;122(4):684–694. doi: 10.1093/oxfordjournals.aje.a114147. [DOI] [PubMed] [Google Scholar]
  39. Polissar L., Lowry-Coble K., Kalman D. A., Hughes J. P., van Belle G., Covert D. S., Burbacher T. M., Bolgiano D., Mottet N. K. Pathways of human exposure to arsenic in a community surrounding a copper smelter. Environ Res. 1990 Oct;53(1):29–47. doi: 10.1016/s0013-9351(05)80128-8. [DOI] [PubMed] [Google Scholar]
  40. Pomroy C., Charbonneau S. M., McCullough R. S., Tam G. K. Human retention studies with 74As. Toxicol Appl Pharmacol. 1980 May;53(3):550–556. doi: 10.1016/0041-008x(80)90368-3. [DOI] [PubMed] [Google Scholar]
  41. Tam G. K., Charbonneau S. M., Bryce F., Pomroy C., Sandi E. Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicol Appl Pharmacol. 1979 Sep 15;50(2):319–322. doi: 10.1016/0041-008x(79)90157-1. [DOI] [PubMed] [Google Scholar]
  42. Trepka M. J., Heinrich J., Schulz C., Krause C., Popescu M., Wjst M., Wichmann H. E. Arsenic burden among children in industrial areas of eastern Germany. Sci Total Environ. 1996 Feb 9;180(2):95–105. doi: 10.1016/0048-9697(95)04945-2. [DOI] [PubMed] [Google Scholar]
  43. Tseng W. P., Chu H. M., How S. W., Fong J. M., Lin C. S., Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968 Mar;40(3):453–463. [PubMed] [Google Scholar]
  44. Tseng W. P. Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect. 1977 Aug;19:109–119. doi: 10.1289/ehp.7719109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tsuda T., Nagira T., Yamamoto M., Kume Y. An epidemiological study on cancer in certified arsenic poisoning patients in Toroku. Ind Health. 1990;28(2):53–62. doi: 10.2486/indhealth.28.53. [DOI] [PubMed] [Google Scholar]
  46. Vahter M., Lind B. Concentrations of arsenic in urine of the general population in Sweden. Sci Total Environ. 1986 Oct;54:1–12. doi: 10.1016/0048-9697(86)90252-4. [DOI] [PubMed] [Google Scholar]
  47. Yamanaka K., Okada S. Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environ Health Perspect. 1994 Sep;102 (Suppl 3):37–40. doi: 10.1289/ehp.94102s337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamato N. Concentrations and chemical species of arsenic in human urine and hair. Bull Environ Contam Toxicol. 1988 May;40(5):633–640. doi: 10.1007/BF01697507. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES