Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Jan;106(1):1–8. doi: 10.1289/ehp.981061

Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms.

H Hu 1, M Rabinowitz 1, D Smith 1
PMCID: PMC1532948  PMID: 9417769

Abstract

The skeleton contains the majority of the body's lead burden in both children and adults. The half-life of lead in bone is in the range of years to decades, depending on bone type, metabolic state, and subject age, among other things. Measurement of skeletal lead has benefited greatly from the recent development of X-ray fluorescence (XRF) instruments that can make rapid, safe, accurate, and relatively precise measurements of lead in bone. Two types of XRF technologies exist, LXRF and KXRF; this paper focuses on KXRF, which has been the most widely validated and used. KXRF is proving to be a powerful analytical methodology for evaluating bone lead levels as a measure of time-integrated (i.e., cumulative) lead dose in epidemiologic studies of the effects of chronic lead exposure. However, insufficient attention has been given to conceptualizing the paradigms by which bone lead levels reflect lead exposure and by which the skeleton serves as an endogenous source of lead. Consideration of these paradigms, which rely on bone lead kinetics, is necessary for the proper development of a priori hypotheses involving bone lead accumulation and release, the selection of bone sites for measurement by KXRF, and the design of epidemiologic studies involving bone lead dynamics. We discuss and present supporting evidence for a conceptual model that distinguishes two major paradigms of skeletal lead, including 1) bone lead as an indicator of cumulative lead exposure (bone lead as repository), and 2) bone lead as a source of body lead burden that is mobilizable into the circulation (bone lead as source). These two roles are not mutually exclusive. Instead, they are components of the processes controlling lead accumulation into and release from bone over time. Developing successful strategies for distinguishing these two processes in epidemiologic studies will require separate measurements of lead in cortical and trabecular bone and additional measurement of specific markers of bone mineral turnover and resorption. It may also involve developing accurate methods for evaluating lead in labile compartments of the circulation, such as plasma, as a potentially useful and responsive measure of bone lead release, of the partitioning of circulatory lead, and of the toxicological significance of lead released from bone to other target organs.

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aono H., Araki S. The effects of CaEDTA injection on lead, zinc, copper and ALAD in erythrocyte, plasma and urine in lead-exposed workers: a 24-h observation. Int Arch Occup Environ Health. 1984;55(1):13–18. doi: 10.1007/BF00378063. [DOI] [PubMed] [Google Scholar]
  2. Araki S., Aono H., Fukahori M., Tabuki K. Behavior of lead and zinc in plasma, erythrocytes, and urine and ALAD in erythrocytes following intravenous infusion of CaEDTA in lead workers. Arch Environ Health. 1984 Sep-Oct;39(5):363–367. doi: 10.1080/00039896.1984.10545865. [DOI] [PubMed] [Google Scholar]
  3. Aro A. C., Todd A. C., Amarasiriwardena C., Hu H. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo. Phys Med Biol. 1994 Dec;39(12):2263–2271. doi: 10.1088/0031-9155/39/12/009. [DOI] [PubMed] [Google Scholar]
  4. Bailey D. A., McCulloch R. G. Bone tissue and physical activity. Can J Sport Sci. 1990 Dec;15(4):229–239. [PubMed] [Google Scholar]
  5. Barry P. S., Mossman D. B. Lead concentrations in human tissues. Br J Ind Med. 1970 Oct;27(4):339–351. doi: 10.1136/oem.27.4.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bellinger D., Hu H., Titlebaum L., Needleman H. L. Attentional correlates of dentin and bone lead levels in adolescents. Arch Environ Health. 1994 Mar-Apr;49(2):98–105. doi: 10.1080/00039896.1994.9937461. [DOI] [PubMed] [Google Scholar]
  7. Brown A., Tompsett S. L. Poisoning due to Mobilization of Lead from the Skeleton. Br Med J. 1945 Dec 1;2(4430):764–765. [PMC free article] [PubMed] [Google Scholar]
  8. Cake K. M., Bowins R. J., Vaillancourt C., Gordon C. L., McNutt R. H., Laporte R., Webber C. E., Chettle D. R. Partition of circulating lead between serum and red cells is different for internal and external sources of lead. Am J Ind Med. 1996 May;29(5):440–445. doi: 10.1002/(SICI)1097-0274(199605)29:5<440::AID-AJIM2>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  9. Cavalleri A., Minoia C., Ceroni M., Poloni M. Lead in cerebrospinal fluid and its relationship to plasma lead in humans. J Appl Toxicol. 1984 Apr;4(2):63–65. doi: 10.1002/jat.2550040202. [DOI] [PubMed] [Google Scholar]
  10. Cavalleri A., Minoia C. Lead level of whole blood and plasma in workers exposed to lead stearate. Scand J Work Environ Health. 1987 Jun;13(3):218–220. doi: 10.5271/sjweh.2060. [DOI] [PubMed] [Google Scholar]
  11. Cavalleri A., Minoia C., Pozzoli L., Baruffini A. Determination of plasma lead levels in normal subjects and in lead-exposed workers. Br J Ind Med. 1978 Feb;35(1):21–26. doi: 10.1136/oem.35.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chia S. E., Chia H. P., Ong C. N., Jeyaratnam J. Cumulative concentrations of blood lead and postural stability. Occup Environ Med. 1996 Apr;53(4):264–268. doi: 10.1136/oem.53.4.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cummings S. R., Kelsey J. L., Nevitt M. C., O'Dowd K. J. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev. 1985;7:178–208. doi: 10.1093/oxfordjournals.epirev.a036281. [DOI] [PubMed] [Google Scholar]
  14. Everson J., Patterson C. C. "ULtra-clean" isotope diultion/mass spectrometic analyses for lead in human blood plasma indicated that most reported values are artificially high. Clin Chem. 1980 Oct;26(11):1603–1607. [PubMed] [Google Scholar]
  15. Flegal A. R., Smith D. R. Measurements of environmental lead contamination and human exposure. Rev Environ Contam Toxicol. 1995;143:1–45. doi: 10.1007/978-1-4612-2542-3_1. [DOI] [PubMed] [Google Scholar]
  16. Fleming D. E., Boulay D., Richard N. S., Robin J. P., Gordon C. L., Webber C. E., Chettle D. R. Accumulated body burden and endogenous release of lead in employees of a lead smelter. Environ Health Perspect. 1997 Feb;105(2):224–233. doi: 10.1289/ehp.97105224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gertz B. J., Shao P., Hanson D. A., Quan H., Harris S. T., Genant H. K., Chesnut C. H., 3rd, Eyre D. R. Monitoring bone resorption in early postmenopausal women by an immunoassay for cross-linked collagen peptides in urine. J Bone Miner Res. 1994 Feb;9(2):135–142. doi: 10.1002/jbmr.5650090202. [DOI] [PubMed] [Google Scholar]
  18. Goldman R. H., White R., Kales S. N., Hu H. Lead poisoning from mobilization of bone stores during thyrotoxicosis. Am J Ind Med. 1994 Mar;25(3):417–424. doi: 10.1002/ajim.4700250309. [DOI] [PubMed] [Google Scholar]
  19. González-Cossío T., Peterson K. E., Sanín L. H., Fishbein E., Palazuelos E., Aro A., Hernández-Avila M., Hu H. Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics. 1997 Nov;100(5):856–862. doi: 10.1542/peds.100.5.856. [DOI] [PubMed] [Google Scholar]
  20. Gordon C. L., Chettle D. R., Webber C. E. An improved instrument for the in vivo detection of lead in bone. Br J Ind Med. 1993 Jul;50(7):637–641. doi: 10.1136/oem.50.7.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grant L. D., Kimmel C. A., West G. L., Martinez-Vargas C. M., Howard J. L. Chronic low-level lead toxicity in the rat. II. Effects on postnatal physical and behavioral development. Toxicol Appl Pharmacol. 1980 Oct;56(1):42–58. doi: 10.1016/0041-008x(80)90130-1. [DOI] [PubMed] [Google Scholar]
  22. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Korsch M. J., Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997 Jul;130(1):51–62. doi: 10.1016/s0022-2143(97)90058-5. [DOI] [PubMed] [Google Scholar]
  23. Gulson B. L., Mahaffey K. R., Mizon K. J., Korsch M. J., Cameron M. A., Vimpani G. Contribution of tissue lead to blood lead in adult female subjects based on stable lead isotope methods. J Lab Clin Med. 1995 Jun;125(6):703–712. [PubMed] [Google Scholar]
  24. Hanson D. A., Weis M. A., Bollen A. M., Maslan S. L., Singer F. R., Eyre D. R. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res. 1992 Nov;7(11):1251–1258. doi: 10.1002/jbmr.5650071119. [DOI] [PubMed] [Google Scholar]
  25. Hernandez-Avila M., Gonzalez-Cossio T., Palazuelos E., Romieu I., Aro A., Fishbein E., Peterson K. E., Hu H. Dietary and environmental determinants of blood and bone lead levels in lactating postpartum women living in Mexico City. Environ Health Perspect. 1996 Oct;104(10):1076–1082. doi: 10.1289/ehp.961041076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hertz-Picciotto I., Croft J. Review of the relation between blood lead and blood pressure. Epidemiol Rev. 1993;15(2):352–373. doi: 10.1093/oxfordjournals.epirev.a036125. [DOI] [PubMed] [Google Scholar]
  27. Hu H., Aro A., Payton M., Korrick S., Sparrow D., Weiss S. T., Rotnitzky A. The relationship of bone and blood lead to hypertension. The Normative Aging Study. JAMA. 1996 Apr 17;275(15):1171–1176. [PubMed] [Google Scholar]
  28. Hu H., Milder F. L., Burger D. E. X-ray fluorescence: issues surrounding the application of a new tool for measuring burden of lead. Environ Res. 1989 Aug;49(2):295–317. doi: 10.1016/s0013-9351(89)80074-x. [DOI] [PubMed] [Google Scholar]
  29. Hu H., Payton M., Korrick S., Aro A., Sparrow D., Weiss S. T., Rotnitzky A. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am J Epidemiol. 1996 Oct 15;144(8):749–759. doi: 10.1093/oxfordjournals.aje.a008999. [DOI] [PubMed] [Google Scholar]
  30. Hu H., Watanabe H., Payton M., Korrick S., Rotnitzky A. The relationship between bone lead and hemoglobin. JAMA. 1994 Nov 16;272(19):1512–1517. [PubMed] [Google Scholar]
  31. Ishihara N., Shiojima S., Hasegawa K. Lead and zinc concentrations in plasma, erythrocytes, and urine in relation to ALA-D activity after intravenous infusion of Ca-EDTA. Br J Ind Med. 1984 May;41(2):235–240. doi: 10.1136/oem.41.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Keller C. A., Doherty R. A. Bone lead mobilization in lactating mice and lead transfer to suckling offspring. Toxicol Appl Pharmacol. 1980 Sep 15;55(2):220–228. doi: 10.1016/0041-008x(80)90083-6. [DOI] [PubMed] [Google Scholar]
  33. Landrigan P. J., Todd A. C. Direct measurement of lead in bone. A promising biomarker. JAMA. 1994 Jan 19;271(3):239–240. [PubMed] [Google Scholar]
  34. Leggett R. W. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993 Dec;101(7):598–616. doi: 10.1289/ehp.93101598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Manton W. I. Total contribution of airborne lead to blood lead. Br J Ind Med. 1985 Mar;42(3):168–172. doi: 10.1136/oem.42.3.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Marcus A. H. Multicompartment kinetic models for lead. I. Bone diffusion models for long-term retention. Environ Res. 1985 Apr;36(2):441–458. doi: 10.1016/0013-9351(85)90037-4. [DOI] [PubMed] [Google Scholar]
  37. Needleman H. L., Gatsonis C. A. Low-level lead exposure and the IQ of children. A meta-analysis of modern studies. JAMA. 1990 Feb 2;263(5):673–678. [PubMed] [Google Scholar]
  38. Needleman H. L., Riess J. A., Tobin M. J., Biesecker G. E., Greenhouse J. B. Bone lead levels and delinquent behavior. JAMA. 1996 Feb 7;275(5):363–369. [PubMed] [Google Scholar]
  39. Nilsson U., Attewell R., Christoffersson J. O., Schütz A., Ahlgren L., Skerfving S., Mattsson S. Kinetics of lead in bone and blood after end of occupational exposure. Pharmacol Toxicol. 1991 Jun;68(6):477–484. doi: 10.1111/j.1600-0773.1991.tb01273.x. [DOI] [PubMed] [Google Scholar]
  40. O'Flaherty E. J. Physiologic changes during growth and development. Environ Health Perspect. 1994 Dec;102 (Suppl 11):103–106. doi: 10.1289/ehp.94102s11103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. O'Flaherty E. J. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol. 1993 Jan;118(1):16–29. doi: 10.1006/taap.1993.1004. [DOI] [PubMed] [Google Scholar]
  42. Ohishi T., Takahashi M., Kushida K., Horiuchi K., Ishigaki S., Inoue T. Quantitative analyses of urinary pyridinoline and deoxypyridinoline excretion in patients with hyperthyroidism. Endocr Res. 1992;18(4):281–290. doi: 10.1080/07435809209111037. [DOI] [PubMed] [Google Scholar]
  43. Olson L., Björklund H., Henschen A., Palmer M., Hoffer B. Some toxic effects of lead, other metals and antibacterial agents on the nervous system--animal experiment models. Acta Neurol Scand Suppl. 1984;100:77–87. [PubMed] [Google Scholar]
  44. Osterloh J. D., Clark O. H. Effects of hyperparathyroidism on blood lead concentrations in man. Environ Res. 1993 Jul;62(1):1–6. doi: 10.1006/enrs.1993.1082. [DOI] [PubMed] [Google Scholar]
  45. Palmer M. R., Björklund H., Freedman R., Taylor D. A., Marwaha J., Olson L., Seiger A., Hoffer B. J. Permanent impairment of spontaneous Purkinje cell discharge in cerebellar grafts caused by chronic lead exposure. Toxicol Appl Pharmacol. 1981 Sep 30;60(3):431–440. doi: 10.1016/0041-008x(81)90328-8. [DOI] [PubMed] [Google Scholar]
  46. Payton M., Hu H., Sparrow D., Weiss S. T. Low-level lead exposure and renal function in the Normative Aging Study. Am J Epidemiol. 1994 Nov 1;140(9):821–829. doi: 10.1093/oxfordjournals.aje.a117330. [DOI] [PubMed] [Google Scholar]
  47. Pirkle J. L., Brody D. J., Gunter E. W., Kramer R. A., Paschal D. C., Flegal K. M., Matte T. D. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES) JAMA. 1994 Jul 27;272(4):284–291. [PubMed] [Google Scholar]
  48. Pocock S. J., Smith M., Baghurst P. Environmental lead and children's intelligence: a systematic review of the epidemiological evidence. BMJ. 1994 Nov 5;309(6963):1189–1197. doi: 10.1136/bmj.309.6963.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rabinowitz M. B. Relating tooth and blood lead levels in children. Bull Environ Contam Toxicol. 1995 Dec;55(6):853–857. doi: 10.1007/BF00209464. [DOI] [PubMed] [Google Scholar]
  50. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976 Aug;58(2):260–270. doi: 10.1172/JCI108467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Magnitude of lead intake from respiration by normal man. J Lab Clin Med. 1977 Aug;90(2):238–248. [PubMed] [Google Scholar]
  52. Reid I. R., Ames R. W., Evans M. C., Gamble G. D., Sharpe S. J. Effect of calcium supplementation on bone loss in postmenopausal women. N Engl J Med. 1993 Feb 18;328(7):460–464. doi: 10.1056/NEJM199302183280702. [DOI] [PubMed] [Google Scholar]
  53. Rosen H. N., Dresner-Pollak R., Moses A. C., Rosenblatt M., Zeind A. J., Clemens J. D., Greenspan S. L. Specificity of urinary excretion of cross-linked N-telopeptides of type I collagen as a marker of bone turnover. Calcif Tissue Int. 1994 Jan;54(1):26–29. doi: 10.1007/BF00316285. [DOI] [PubMed] [Google Scholar]
  54. Rosen J. F., Crocetti A. F., Balbi K., Balbi J., Bailey C., Clemente I., Redkey N., Grainger S. Bone lead content assessed by L-line x-ray fluorescence in lead-exposed and non-lead-exposed suburban populations in the United States. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2789–2792. doi: 10.1073/pnas.90.7.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schroeder H. A., Tipton I. H. The human body burden of lead. Arch Environ Health. 1968 Dec;17(6):965–978. doi: 10.1080/00039896.1968.10665354. [DOI] [PubMed] [Google Scholar]
  56. Schwartz J. Lead, blood pressure, and cardiovascular disease in men. Arch Environ Health. 1995 Jan-Feb;50(1):31–37. doi: 10.1080/00039896.1995.9955010. [DOI] [PubMed] [Google Scholar]
  57. Schütz A., Skerfving S., Christoffersson J. O., Tell I. Chelatable lead versus lead in human trabecular and compact bone. Sci Total Environ. 1987 Mar;61:201–209. doi: 10.1016/0048-9697(87)90367-6. [DOI] [PubMed] [Google Scholar]
  58. Schütz A., Skerfving S., Ranstam J., Christoffersson J. O. Kinetics of lead in blood after the end of occupational exposure. Scand J Work Environ Health. 1987 Jun;13(3):221–231. doi: 10.5271/sjweh.2059. [DOI] [PubMed] [Google Scholar]
  59. Seibel M. J., Gartenberg F., Silverberg S. J., Ratcliffe A., Robins S. P., Bilezikian J. P. Urinary hydroxypyridinium cross-links of collagen in primary hyperparathyroidism. J Clin Endocrinol Metab. 1992 Mar;74(3):481–486. doi: 10.1210/jcem.74.3.1740480. [DOI] [PubMed] [Google Scholar]
  60. Sharp D. S., Becker C. E., Smith A. H. Chronic low-level lead exposure. Its role in the pathogenesis of hypertension. Med Toxicol. 1987 May-Jun;2(3):210–232. doi: 10.1007/BF03259865. [DOI] [PubMed] [Google Scholar]
  61. Silbergeld E. K. Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect. 1991 Feb;91:63–70. doi: 10.1289/ehp.919163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Silbergeld E. K., Schwartz J., Mahaffey K. Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res. 1988 Oct;47(1):79–94. doi: 10.1016/s0013-9351(88)80023-9. [DOI] [PubMed] [Google Scholar]
  63. Simons T. J. Passive transport and binding of lead by human red blood cells. J Physiol. 1986 Sep;378:267–286. doi: 10.1113/jphysiol.1986.sp016219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Smith D. R., Osterloh J. D., Flegal A. R. Use of endogenous, stable lead isotopes to determine release of lead from the skeleton. Environ Health Perspect. 1996 Jan;104(1):60–66. doi: 10.1289/ehp.9610460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Staessen J. A., Lauwerys R. R., Buchet J. P., Bulpitt C. J., Rondia D., Vanrenterghem Y., Amery A. Impairment of renal function with increasing blood lead concentrations in the general population. The Cadmibel Study Group. N Engl J Med. 1992 Jul 16;327(3):151–156. doi: 10.1056/NEJM199207163270303. [DOI] [PubMed] [Google Scholar]
  66. Symanski E., Hertz-Picciotto I. Blood lead levels in relation to menopause, smoking, and pregnancy history. Am J Epidemiol. 1995 Jun 1;141(11):1047–1058. doi: 10.1093/oxfordjournals.aje.a117369. [DOI] [PubMed] [Google Scholar]
  67. Thompson G. N., Robertson E. F., Fitzgerald S. Lead mobilization during pregnancy. Med J Aust. 1985 Aug 5;143(3):131–131. doi: 10.5694/j.1326-5377.1985.tb122859.x. [DOI] [PubMed] [Google Scholar]
  68. Todd A. C., McNeill F. E., Palethorpe J. E., Peach D. E., Chettle D. R., Tobin M. J., Strosko S. J., Rosen J. C. In vivo X-ray fluorescence of lead in bone using K X-ray excitation with 109Cd sources: radiation dosimetry studies. Environ Res. 1992 Apr;57(2):117–132. doi: 10.1016/s0013-9351(05)80073-8. [DOI] [PubMed] [Google Scholar]
  69. Tothill P., Matheson L. M., McKay K., Smyth J. F. Mobilisation of lead by cisplatin. Lancet. 1989 Dec 2;2(8675):1342–1342. doi: 10.1016/s0140-6736(89)91957-0. [DOI] [PubMed] [Google Scholar]
  70. Victery W. Evidence for effects of chronic lead exposure on blood pressure in experimental animals: an overview. Environ Health Perspect. 1988 Jun;78:71–76. doi: 10.1289/ehp.887871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Vogel J. M., Wasnich R. D., Ross P. D. The clinical relevance of calcaneus bone mineral measurements: a review. Bone Miner. 1988 Oct;5(1):35–58. doi: 10.1016/0169-6009(88)90005-0. [DOI] [PubMed] [Google Scholar]
  72. Wedeen R. D. In vivo tibial XFR measurement of bone lead. Arch Environ Health. 1990 Mar-Apr;45(2):69–71. doi: 10.1080/00039896.1990.9935927. [DOI] [PubMed] [Google Scholar]
  73. Wedeen R. P., Malik D. K., Batuman V. Detection and treatment of occupational lead nephropathy. Arch Intern Med. 1979 Jan;139(1):53–57. [PubMed] [Google Scholar]
  74. Wittmers L. E., Jr, Aufderheide A. C., Wallgren J., Rapp G., Jr, Alich A. Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health. 1988 Nov-Dec;43(6):381–391. doi: 10.1080/00039896.1988.9935855. [DOI] [PubMed] [Google Scholar]
  75. deSilva P. E. Determination of lead in plasma and studies on its relationship to lead in erythrocytes. Br J Ind Med. 1981 Aug;38(3):209–217. doi: 10.1136/oem.38.3.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. el-Sharkawi A. M., Morgan W. D., Cobbold S., Jaib M. B., Evans C. J., Somervaille L. J., Chettle D. R., Scott M. C. Unexpected mobilisation of lead during cisplatin chemotherapy. Lancet. 1986 Aug 2;2(8501):249–250. doi: 10.1016/s0140-6736(86)92072-6. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES