Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Apr;106(4):207–211. doi: 10.1289/ehp.98106207

Position- and base pair-specific comparison of p53 mutation spectra in human tumors: elucidation of relationships between organs for cancer etiology.

W K Lutz 1, T Fekete 1, S Vamvakas 1
PMCID: PMC1532972  PMID: 9494124

Abstract

A new approach to analyze the p53 mutation database of the European Molecular Biology Laboratory for a comparison of mutation spectra is described, with the aim of investigating organ specificity of etiological factors and putative organ-to-organ relationships in cancer pathogenesis. The number of entries of each nucleotide- and base-pair substitution-specific mutation was divided by the total number of tumors analyzed. For each organ pair, the difference of the mutation-specific frequency differences was calculated. Resulting values could range from 0 (full concordance) to 2 (full discordance). Skin, lung, and urinary bladder showed highly independent mutation spectra (maximum discordance value = 1.48 for skin versus brain), in agreement with the presence of specific factors responsible for a large number of the respective tumors (UV light, smoking, aromatic amines). The three organs with the smallest sum of discordance values were mammary gland (breast), colon and esophagus. The minimum organ-to-organ discordance value was 0.95, for stomach versus colon. For these organs, common, possibly also endogenous, cancer risk factors could be postulated as contributing to the observed mutation spectrum. The remaining cancers (ovary, sarcoma, leukemia/lymphoma, brain, head and neck, and stomach, in order or increasing discordance) were of intermediate range and showed a mix of values. Reasons for close relationship to some of the other organs and marked differences to others are discussed. Exclusion of the "hot-spot" mutations did not markedly alter the observed relationships, indicating that a putative selective growth advantage does not cover up the etiological basis for the observed mutation spectrum. It is expected that much more insight into carcinogenesis and cancer could be gained by further exploratory analyses of mutation databases.

Full text

PDF
207

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Gold L. S. Endogenous mutagens and the causes of aging and cancer. Mutat Res. 1991 Sep-Oct;250(1-2):3–16. doi: 10.1016/0027-5107(91)90157-j. [DOI] [PubMed] [Google Scholar]
  2. Biggs P. J., Warren W., Venitt S., Stratton M. R. Does a genotoxic carcinogen contribute to human breast cancer? The value of mutational spectra in unravelling the aetiology of cancer. Mutagenesis. 1993 Jul;8(4):275–283. doi: 10.1093/mutage/8.4.275. [DOI] [PubMed] [Google Scholar]
  3. Daya-Grosjean L., Dumaz N., Sarasin A. The specificity of p53 mutation spectra in sunlight induced human cancers. J Photochem Photobiol B. 1995 May;28(2):115–124. doi: 10.1016/1011-1344(95)07130-t. [DOI] [PubMed] [Google Scholar]
  4. Denissenko M. F., Pao A., Tang M., Pfeifer G. P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996 Oct 18;274(5286):430–432. doi: 10.1126/science.274.5286.430. [DOI] [PubMed] [Google Scholar]
  5. Devesa S. S., Shaw G. L., Blot W. J. Changing patterns of lung cancer incidence by histological type. Cancer Epidemiol Biomarkers Prev. 1991 Nov-Dec;1(1):29–34. [PubMed] [Google Scholar]
  6. Doll R., Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981 Jun;66(6):1191–1308. [PubMed] [Google Scholar]
  7. Doll R. Urban and rural factors in the aetiology of cancer. Int J Cancer. 1991 Apr 1;47(6):803–810. doi: 10.1002/ijc.2910470602. [DOI] [PubMed] [Google Scholar]
  8. Dumaz N., Stary A., Soussi T., Daya-Grosjean L., Sarasin A. Can we predict solar ultraviolet radiation as the causal event in human tumours by analysing the mutation spectra of the p53 gene? Mutat Res. 1994 May 1;307(1):375–386. doi: 10.1016/0027-5107(94)90311-5. [DOI] [PubMed] [Google Scholar]
  9. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  10. Hainaut P., Soussi T., Shomer B., Hollstein M., Greenblatt M., Hovig E., Harris C. C., Montesano R. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 1997 Jan 1;25(1):151–157. doi: 10.1093/nar/25.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffmann D., Rivenson A., Hecht S. S. The biological significance of tobacco-specific N-nitrosamines: smoking and adenocarcinoma of the lung. Crit Rev Toxicol. 1996;26(2):199–211. doi: 10.3109/10408449609017931. [DOI] [PubMed] [Google Scholar]
  12. Hollstein M., Shomer B., Greenblatt M., Soussi T., Hovig E., Montesano R., Harris C. C. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 1996 Jan 1;24(1):141–146. doi: 10.1093/nar/24.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Husgafvel-Pursiainen K., Kannio A. Cigarette smoking and p53 mutations in lung cancer and bladder cancer. Environ Health Perspect. 1996 May;104 (Suppl 3):553–556. doi: 10.1289/ehp.96104s3553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lasky T., Silbergeld E. P53 mutations associated with breast, colorectal, liver, lung, and ovarian cancers. Environ Health Perspect. 1996 Dec;104(12):1324–1331. doi: 10.1289/ehp.961041324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lutz W. K., Fekete T. Endogenous and exogenous factors in carcinogenesis: limits to cancer prevention. Int Arch Occup Environ Health. 1996;68(2):120–125. doi: 10.1007/BF00381244. [DOI] [PubMed] [Google Scholar]
  16. Lutz W. K. In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis. Mutat Res. 1979 Dec;65(4):289–356. doi: 10.1016/0165-1110(79)90006-x. [DOI] [PubMed] [Google Scholar]
  17. Patel A. R., Obrams G. I. Adenocarcinoma of the lung. Cancer Epidemiol Biomarkers Prev. 1995 Mar;4(2):175–180. [PubMed] [Google Scholar]
  18. Shirai T. Etiology of bladder cancer. Semin Urol. 1993 Aug;11(3):113–126. [PubMed] [Google Scholar]
  19. Spruck C. H., 3rd, Rideout W. M., 3rd, Olumi A. F., Ohneseit P. F., Yang A. S., Tsai Y. C., Nichols P. W., Horn T., Hermann G. G., Steven K. Distinct pattern of p53 mutations in bladder cancer: relationship to tobacco usage. Cancer Res. 1993 Mar 1;53(5):1162–1166. [PubMed] [Google Scholar]
  20. Wild C. P., Kleihues P. Etiology of cancer in humans and animals. Exp Toxicol Pathol. 1996 Feb;48(2-3):95–100. doi: 10.1016/S0940-2993(96)80029-7. [DOI] [PubMed] [Google Scholar]
  21. Wolff M. S., Collman G. W., Barrett J. C., Huff J. Breast cancer and environmental risk factors: epidemiological and experimental findings. Annu Rev Pharmacol Toxicol. 1996;36:573–596. doi: 10.1146/annurev.pa.36.040196.003041. [DOI] [PubMed] [Google Scholar]
  22. Wynder E. L., Covey L. S. Epidemiologic patterns in lung cancer by histologic type. Eur J Cancer Clin Oncol. 1987 Oct;23(10):1491–1496. doi: 10.1016/0277-5379(87)90091-5. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES