Abstract
The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic estrogens is widely used in industry, particularly in plastics. Bisphenol F, bisphenol A, fluorine-containing bisphenol A (bisphenol AF), and other diphenylalkanes were found to be estrogenic in a bioassay with MCF7 human breast cancer cells in culture (E-SCREEN assay). Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the estrogen receptor. Our data suggest that estrogenicity is influenced not only by the length of the substituents at the bridging carbon but also by their nature. Because diphenylalkane derivatives are widespread and their production and use are increasing, potential exposure of humans to estrogenic bisphenols is becoming a significant issue. The hazardous effects of inadvertent exposure to bisphenol-releasing chemicals in professional workers and the general populations therefore deserve investigation.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOURNE L. B., MILNER F. J., ALBERMAN K. B. Health problems of epoxy resins and amine-curing agents. Br J Ind Med. 1959 Apr;16(2):81–97. doi: 10.1136/oem.16.2.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Climie I. J., Hutson D. H., Stoydin G. Metabolism of the epoxy resin component 2,2-bis[4-(2,3-epoxypropoxy)phenyl]propane, the diglycidyl ether of bisphenol A (DGEBPA) in the mouse. Part II. Identification of metabolites in urine and faeces following a single oral dose of 14C-DGEBPA. Xenobiotica. 1981 Jun;11(6):401–424. doi: 10.3109/00498258109045851. [DOI] [PubMed] [Google Scholar]
- Climie I. J., Hutson D. H., Stoydin G. Metabolism of the epoxy resin component 2,2-bis[4](2,3]epoxypropoxy)phenyl]propane, the diglycidyl ether of bisphenol A (DGEBPA) in the mouse. Part I. A comparison of the fate of a single dermal application and of a single oral dose of 14C-DGEBPA. Xenobiotica. 1981 Jun;11(6):391–399. doi: 10.3109/00498258109045850. [DOI] [PubMed] [Google Scholar]
- Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colerangle J. B., Roy D. Profound effects of the weak environmental estrogen-like chemical bisphenol A on the growth of the mammary gland of Noble rats. J Steroid Biochem Mol Biol. 1997 Jan;60(1-2):153–160. doi: 10.1016/s0960-0760(96)00130-6. [DOI] [PubMed] [Google Scholar]
- Connor K., Ramamoorthy K., Moore M., Mustain M., Chen I., Safe S., Zacharewski T., Gillesby B., Joyeux A., Balaguer P. Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure-activity relationships. Toxicol Appl Pharmacol. 1997 Jul;145(1):111–123. doi: 10.1006/taap.1997.8169. [DOI] [PubMed] [Google Scholar]
- Cummings A. M., Metcalf J. L. Methoxychlor regulates rat uterine estrogen-induced protein. Toxicol Appl Pharmacol. 1995 Jan;130(1):154–160. doi: 10.1006/taap.1995.1020. [DOI] [PubMed] [Google Scholar]
- Feldman D. Estrogens from plastic--are we being exposed? Endocrinology. 1997 May;138(5):1777–1779. doi: 10.1210/endo.138.5.5213. [DOI] [PubMed] [Google Scholar]
- Jolanki R., Kanerva L., Estlander T., Tarvainen K., Keskinen H., Henriks-Eckerman M. L. Occupational dermatoses from epoxy resin compounds. Contact Dermatitis. 1990 Sep;23(3):172–183. doi: 10.1111/j.1600-0536.1990.tb04779.x. [DOI] [PubMed] [Google Scholar]
- Knuppen R., Ball P., Emons G. Importance of A-ring substitution of estrogens for the physiology and pharmacology of reproduction. J Steroid Biochem. 1986 Jan;24(1):193–198. doi: 10.1016/0022-4731(86)90050-6. [DOI] [PubMed] [Google Scholar]
- Krishnan A. V., Stathis P., Permuth S. F., Tokes L., Feldman D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology. 1993 Jun;132(6):2279–2286. doi: 10.1210/endo.132.6.8504731. [DOI] [PubMed] [Google Scholar]
- Lewis D. F., Parker M. G., King R. J. Molecular modelling of the human estrogen receptor and ligand interactions based on site-directed mutagenesis and amino acid sequence homology. J Steroid Biochem Mol Biol. 1995 Jan;52(1):55–65. doi: 10.1016/0960-0760(94)00151-b. [DOI] [PubMed] [Google Scholar]
- Lobos J. H., Leib T. K., Su T. M. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl Environ Microbiol. 1992 Jun;58(6):1823–1831. doi: 10.1128/aem.58.6.1823-1831.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey R. E., George J. D., Price C. J., Tyl R. W., Marr M. C., Kimmel C. A. The developmental toxicity of bisphenol A in rats and mice. Fundam Appl Toxicol. 1987 May;8(4):571–582. doi: 10.1016/0272-0590(87)90142-4. [DOI] [PubMed] [Google Scholar]
- Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Routledge E. J., Sumpter J. P. Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem. 1997 Feb 7;272(6):3280–3288. doi: 10.1074/jbc.272.6.3280. [DOI] [PubMed] [Google Scholar]
- Sharman M., Honeybone C. A., Jickells S. M., Castle L. Detection of residues of the epoxy adhesive component bisphenol A diglycidyl ether (BADGE) in microwave susceptors and its migration into food. Food Addit Contam. 1995 Nov-Dec;12(6):779–787. doi: 10.1080/02652039509374370. [DOI] [PubMed] [Google Scholar]
- Soto A. M., Justicia H., Wray J. W., Sonnenschein C. p-Nonyl-phenol: an estrogenic xenobiotic released from "modified" polystyrene. Environ Health Perspect. 1991 May;92:167–173. doi: 10.1289/ehp.9192167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soto A. M., Sonnenschein C. The role of estrogens on the proliferation of human breast tumor cells (MCF-7). J Steroid Biochem. 1985 Jul;23(1):87–94. doi: 10.1016/0022-4731(85)90265-1. [DOI] [PubMed] [Google Scholar]
- Spivack J., Leib T. K., Lobos J. H. Novel pathway for bacterial metabolism of bisphenol A. Rearrangements and stilbene cleavage in bisphenol A metabolism. J Biol Chem. 1994 Mar 11;269(10):7323–7329. [PubMed] [Google Scholar]
- Steiner S., Hönger G., Sagelsdorff P. Molecular dosimetry of DNA adducts in C3H mice treated with bisphenol A diglycidylether. Carcinogenesis. 1992 Jun;13(6):969–972. doi: 10.1093/carcin/13.6.969. [DOI] [PubMed] [Google Scholar]
- Steinmetz R., Brown N. G., Allen D. L., Bigsby R. M., Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology. 1997 May;138(5):1780–1786. doi: 10.1210/endo.138.5.5132. [DOI] [PubMed] [Google Scholar]
- Villalobos M., Olea N., Brotons J. A., Olea-Serrano M. F., Ruiz de Almodovar J. M., Pedraza V. The E-screen assay: a comparison of different MCF7 cell stocks. Environ Health Perspect. 1995 Sep;103(9):844–850. doi: 10.1289/ehp.95103844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Joost T., Roesyanto I. D., Satyawan I. Occupational sensitization to epichlorohydrin (ECH) and bisphenol-A during the manufacture of epoxy resin. Contact Dermatitis. 1990 Feb;22(2):125–126. doi: 10.1111/j.1600-0536.1990.tb01543.x. [DOI] [PubMed] [Google Scholar]




