Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Mar;106(3):147–153. doi: 10.1289/ehp.98106147

Dengue fever epidemic potential as projected by general circulation models of global climate change.

J A Patz 1, W J Martens 1, D A Focks 1, T H Jetten 1
PMCID: PMC1533051  PMID: 9452414

Abstract

Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases.

Full text

PDF
147

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhamarapravati N., Yoksan S., Chayaniyayothin T., Angsubphakorn S., Bunyaratvej A. Immunization with a live attenuated dengue-2-virus candidate vaccine (16681-PDK 53): clinical, immunological and biological responses in adult volunteers. Bull World Health Organ. 1987;65(2):189–195. [PMC free article] [PubMed] [Google Scholar]
  2. Figueroa M., Pereira R., Gutiérrez H., de Mejía C., Padilla N. Dengue epidemic in Honduras, 1978-1980. Bull Pan Am Health Organ. 1982;16(2):130–137. [PubMed] [Google Scholar]
  3. Focks D. A., Daniels E., Haile D. G., Keesling J. E. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg. 1995 Nov;53(5):489–506. doi: 10.4269/ajtmh.1995.53.489. [DOI] [PubMed] [Google Scholar]
  4. Focks D. A., Haile D. G., Daniels E., Mount G. A. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol. 1993 Nov;30(6):1003–1017. doi: 10.1093/jmedent/30.6.1003. [DOI] [PubMed] [Google Scholar]
  5. Focks D. A., Haile D. G., Daniels E., Mount G. A. Dynamic life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation. J Med Entomol. 1993 Nov;30(6):1018–1028. doi: 10.1093/jmedent/30.6.1018. [DOI] [PubMed] [Google Scholar]
  6. GARRETT-JONES C. PROGNOSIS FOR INTERRUPTION OF MALARIA TRANSMISSION THROUGH ASSESSMENT OF THE MOSQUITO'S VECTORIAL CAPACITY. Nature. 1964 Dec 19;204:1173–1175. doi: 10.1038/2041173a0. [DOI] [PubMed] [Google Scholar]
  7. Gilpin M. E., McClelland G. A. Systems analysis of the yellow fever mosquito Aedes aegypti. Fortschr Zool. 1979;25(2-3):355–388. [PubMed] [Google Scholar]
  8. Gubler D. J., Clark G. G. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis. 1995 Apr-Jun;1(2):55–57. doi: 10.3201/eid0102.952004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gubler D. J., Trent D. W. Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect Agents Dis. 1993 Dec;2(6):383–393. [PubMed] [Google Scholar]
  10. Gunakasem P., Chantrasri C., Chaiyanun S., Simasathien P., Jatanasen S., Sangpetchsong V. Surveillance of dengue hemorrhagic fever cases in Thailand. Southeast Asian J Trop Med Public Health. 1981 Sep;12(3):338–343. [PubMed] [Google Scholar]
  11. Hales S., Weinstein P., Woodward A. Dengue fever epidemics in the South Pacific: driven by El Niño Southern Oscillation? Lancet. 1996 Dec 14;348(9042):1664–1665. doi: 10.1016/S0140-6736(05)65737-6. [DOI] [PubMed] [Google Scholar]
  12. Halstead S. B., Papaevangelou G. Transmission of dengue 1 and 2 viruses in Greece in 1928. Am J Trop Med Hyg. 1980 Jul;29(4):635–637. doi: 10.4269/ajtmh.1980.29.635. [DOI] [PubMed] [Google Scholar]
  13. Halstead S. B. Pathogenesis of dengue: challenges to molecular biology. Science. 1988 Jan 29;239(4839):476–481. doi: 10.1126/science.3277268. [DOI] [PubMed] [Google Scholar]
  14. Herrera-Basto E., Prevots D. R., Zarate M. L., Silva J. L., Sepulveda-Amor J. First reported outbreak of classical dengue fever at 1,700 meters above sea level in Guerrero State, Mexico, June 1988. Am J Trop Med Hyg. 1992 Jun;46(6):649–653. doi: 10.4269/ajtmh.1992.46.649. [DOI] [PubMed] [Google Scholar]
  15. Jetten T. H., Focks D. A. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg. 1997 Sep;57(3):285–297. doi: 10.4269/ajtmh.1997.57.285. [DOI] [PubMed] [Google Scholar]
  16. Koopman J. S., Prevots D. R., Vaca Marin M. A., Gomez Dantes H., Zarate Aquino M. L., Longini I. M., Jr, Sepulveda Amor J. Determinants and predictors of dengue infection in Mexico. Am J Epidemiol. 1991 Jun 1;133(11):1168–1178. doi: 10.1093/oxfordjournals.aje.a115829. [DOI] [PubMed] [Google Scholar]
  17. Lifson A. R. Mosquitoes, models, and dengue. Lancet. 1996 May 4;347(9010):1201–1202. doi: 10.1016/s0140-6736(96)90730-8. [DOI] [PubMed] [Google Scholar]
  18. MACDONALD W. W. Aedes aegypti in Malaya. II. Larval and adult biology. Ann Trop Med Parasitol. 1956 Dec;50(4):399–414. [PubMed] [Google Scholar]
  19. Martens W. J., Niessen L. W., Rotmans J., Jetten T. H., McMichael A. J. Potential impact of global climate change on malaria risk. Environ Health Perspect. 1995 May;103(5):458–464. doi: 10.1289/ehp.95103458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McClelland G. A., Conway G. R. Frequency of blood feeding in the mosquito Aedes aegypti. Nature. 1971 Aug 13;232(5311):485–486. doi: 10.1038/232485a0. [DOI] [PubMed] [Google Scholar]
  21. McLean D. M., Clarke A. M., Coleman J. C., Montalbetti C. A., Skidmore A. G., Walters T. E., Wise R. Vector capability of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures. Can J Microbiol. 1974 Feb;20(2):255–262. doi: 10.1139/m74-040. [DOI] [PubMed] [Google Scholar]
  22. Moore C. G., Cline B. L., Ruiz-Tibén E., Lee D., Romney-Joseph H., Rivera-Correa E. Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg. 1978 Nov;27(6):1225–1231. doi: 10.4269/ajtmh.1978.27.1225. [DOI] [PubMed] [Google Scholar]
  23. Newton E. A., Reiter P. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am J Trop Med Hyg. 1992 Dec;47(6):709–720. doi: 10.4269/ajtmh.1992.47.709. [DOI] [PubMed] [Google Scholar]
  24. Pant C. P., Yasuno M. Field studies on the gonotrophic cycle of Aedes aegypti in Bangkok, Thailand. J Med Entomol. 1973 Apr 25;10(2):219–223. doi: 10.1093/jmedent/10.2.219. [DOI] [PubMed] [Google Scholar]
  25. Patz J. A., Epstein P. R., Burke T. A., Balbus J. M. Global climate change and emerging infectious diseases. JAMA. 1996 Jan 17;275(3):217–223. [PubMed] [Google Scholar]
  26. Rueda L. M., Patel K. J., Axtell R. C., Stinner R. E. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1990 Sep;27(5):892–898. doi: 10.1093/jmedent/27.5.892. [DOI] [PubMed] [Google Scholar]
  27. Scott T. W., Chow E., Strickman D., Kittayapong P., Wirtz R. A., Lorenz L. H., Edman J. D. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol. 1993 Sep;30(5):922–927. doi: 10.1093/jmedent/30.5.922. [DOI] [PubMed] [Google Scholar]
  28. Sharpe P. J., DeMichele D. W. Reaction kinetics of poikilotherm development. J Theor Biol. 1977 Feb 21;64(4):649–670. doi: 10.1016/0022-5193(77)90265-x. [DOI] [PubMed] [Google Scholar]
  29. Southwood T. R., Murdie G., Yasuno M., Tonn R. J., Reader P. M. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ. 1972;46(2):211–226. [PMC free article] [PubMed] [Google Scholar]
  30. Watts D. M., Burke D. S., Harrison B. A., Whitmire R. E., Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987 Jan;36(1):143–152. doi: 10.4269/ajtmh.1987.36.143. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES