Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Jun;106(Suppl 3):821–826. doi: 10.1289/ehp.98106821

Relationship between ambient air pollution and DNA damage in Polish mothers and newborns.

R M Whyatt 1, R M Santella 1, W Jedrychowski 1, S J Garte 1, D A Bell 1, R Ottman 1, A Gladek-Yarborough 1, G Cosma 1, T L Young 1, T B Cooper 1, M C Randall 1, D K Manchester 1, F P Perera 1
PMCID: PMC1533078  PMID: 9646044

Abstract

Industrialized regions in Poland are characterized by high ambient pollution, including polycyclic aromatic hydrocarbons (PAHs) from coal burning for industry and home heating. In experimental bioassays, certain PAHs are transplacental carcinogens and developmental toxicants. Biologic markers can facilitate evaluation of effects of environmental PAHs on the developing infant. We measured the amount of PAHs bound to DNA (PAH-DNA adducts) in maternal and umbilical white blood cells. The cohort consisted of 70 mothers and newborns from Krakow, Poland, an industrialized city with elevated air pollution. Modulation of adduct levels by genotypes previously linked to risk of lung cancer, specifically glutathione S-transferase MI (GSTM1) and cytochrome P4501A1 (CYP1A1) Msp restriction fragment length polymorphism (RFLP), was also investigated. There was a dose-related increase in maternal and newborn adduct levels with ambient pollution at the women's place of residence among subjects who were not employed away from home (p < or = 0.05). Maternal smoking (active and passive) significantly increased maternal (p < or = 0.01) but not newborn adduct levels. Neither CYP1A1 Msp nor GSTM1 polymorphisms was associated with maternal adducts. However, adducts were significantly higher in newborns heterozygous or homozygous for the CYP1A1 Msp RFLP compared to newborns without the RFLP (p = 0.04). Results indicate that PAH-induced DNA damage in mothers and newborns is increased by ambient air pollution. In the fetus, this damage appears to be enhanced by the CYP1A1 Mspl polymorphism.

Full text

PDF
821

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrie A. K., Sundberg M. I., Seidegård J., Tornling G., Rannug A. Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study on host factors in relation to age at onset, gender and histological cancer types. Carcinogenesis. 1994 Sep;15(9):1785–1790. doi: 10.1093/carcin/15.9.1785. [DOI] [PubMed] [Google Scholar]
  2. Amos C. I., Caporaso N. E., Weston A. Host factors in lung cancer risk: a review of interdisciplinary studies. Cancer Epidemiol Biomarkers Prev. 1992 Sep-Oct;1(6):505–513. [PubMed] [Google Scholar]
  3. Bartsch H., Terracini B., Malaveille C., Tomatis L., Wahrendorf J., Brun G., Dodet B. Quantitative comparison of carcinogenicity, mutagenicity and electrophilicity of 10 direct-acting alkylating agents and of the initial O6:7-alkylguanine ratio in DNA with carcinogenic potency in rodents. Mutat Res. 1983 Aug;110(2):181–219. doi: 10.1016/0027-5107(83)90140-9. [DOI] [PubMed] [Google Scholar]
  4. Becher H., Zatonski W., Jöckel K. H. Passive smoking in Germany and Poland: comparison of exposure levels, sources of exposure, validity, and perception. Epidemiology. 1992 Nov;3(6):509–514. doi: 10.1097/00001648-199211000-00008. [DOI] [PubMed] [Google Scholar]
  5. Bell D. A., Thompson C. L., Taylor J., Miller C. R., Perera F., Hsieh L. L., Lucier G. W. Genetic monitoring of human polymorphic cancer susceptibility genes by polymerase chain reaction: application to glutathione transferase mu. Environ Health Perspect. 1992 Nov;98:113–117. doi: 10.1289/ehp.9298113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Binková B., Lewtas J., Mísková I., Rössner P., Cerná M., Mrácková G., Peterková K., Mumford J., Meyer S., Srám R. Biomarker studies in northern Bohemia. Environ Health Perspect. 1996 May;104 (Suppl 3):591–597. doi: 10.1289/ehp.104-1469612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brockmöller J., Kerb R., Drakoulis N., Nitz M., Roots I. Genotype and phenotype of glutathione S-transferase class mu isoenzymes mu and psi in lung cancer patients and controls. Cancer Res. 1993 Mar 1;53(5):1004–1011. [PubMed] [Google Scholar]
  8. Bui Q. Q., Tran M. B., West W. L. A comparative study of the reproductive effects of methadone and benzo[a]pyrene in the pregnant and pseudopregnant rat. Toxicology. 1986 Dec 15;42(2-3):195–204. doi: 10.1016/0300-483x(86)90009-0. [DOI] [PubMed] [Google Scholar]
  9. Bulay O. M., Wattenberg L. W. Carcinogenic effects of polycyclic hydrocarbon carcinogen administration to mice during pregnancy on the progeny. J Natl Cancer Inst. 1971 Feb;46(2):397–402. [PubMed] [Google Scholar]
  10. Crawford F. G., Mayer J., Santella R. M., Cooper T. B., Ottman R., Tsai W. Y., Simon-Cereijido G., Wang M., Tang D., Perera F. P. Biomarkers of environmental tobacco smoke in preschool children and their mothers. J Natl Cancer Inst. 1994 Sep 21;86(18):1398–1402. doi: 10.1093/jnci/86.18.1398. [DOI] [PubMed] [Google Scholar]
  11. Crofts F., Taioli E., Trachman J., Cosma G. N., Currie D., Toniolo P., Garte S. J. Functional significance of different human CYP1A1 genotypes. Carcinogenesis. 1994 Dec;15(12):2961–2963. doi: 10.1093/carcin/15.12.2961. [DOI] [PubMed] [Google Scholar]
  12. Everson R. B., Randerath E., Santella R. M., Avitts T. A., Weinstein I. B., Randerath K. Quantitative associations between DNA damage in human placenta and maternal smoking and birth weight. J Natl Cancer Inst. 1988 Jun 15;80(8):567–576. doi: 10.1093/jnci/80.8.567. [DOI] [PubMed] [Google Scholar]
  13. Gallagher J. E., Everson R. B., Lewtas J., George M., Lucier G. W. Comparison of DNA adduct levels in human placenta from polychlorinated biphenyl exposed women and smokers in which CYP 1A1 levels are similarly elevated. Teratog Carcinog Mutagen. 1994;14(4):183–192. doi: 10.1002/tcm.1770140405. [DOI] [PubMed] [Google Scholar]
  14. Gorgels W. J., van Poppel G., Jarvis M. J., Stenhuis W., Kok F. J. Passive smoking and sister-chromatid exchanges in lymphocytes. Mutat Res. 1992 Jun 16;279(4):233–238. doi: 10.1016/0165-1218(92)90238-u. [DOI] [PubMed] [Google Scholar]
  15. Hansen C., Asmussen I., Autrup H. Detection of carcinogen-DNA adducts in human fetal tissues by the 32P-postlabeling procedure. Environ Health Perspect. 1993 Mar;99:229–231. doi: 10.1289/ehp.9399229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harris C. C. Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res. 1991 Sep 15;51(18 Suppl):5023s–5044s. [PubMed] [Google Scholar]
  17. Hayashi S., Watanabe J., Kawajiri K. High susceptibility to lung cancer analyzed in terms of combined genotypes of P450IA1 and Mu-class glutathione S-transferase genes. Jpn J Cancer Res. 1992 Aug;83(8):866–870. doi: 10.1111/j.1349-7006.1992.tb01992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayashi S., Watanabe J., Nakachi K., Kawajiri K. Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem. 1991 Sep;110(3):407–411. doi: 10.1093/oxfordjournals.jbchem.a123594. [DOI] [PubMed] [Google Scholar]
  19. Holz O., Krause T., Scherer G., Schmidt-Preuss U., Rüdiger H. W. 32P-postlabelling analysis of DNA adducts in monocytes of smokers and passive smokers. Int Arch Occup Environ Health. 1990;62(4):299–303. doi: 10.1007/BF00640837. [DOI] [PubMed] [Google Scholar]
  20. Ichiba M., Hagmar L., Rannug A., Högstedt B., Alexandrie A. K., Carstensen U., Hemminki K. Aromatic DNA adducts, micronuclei and genetic polymorphism for CYP1A1 and GST1 in chimney sweeps. Carcinogenesis. 1994 Jul;15(7):1347–1352. doi: 10.1093/carcin/15.7.1347. [DOI] [PubMed] [Google Scholar]
  21. Jedrychowski W., Becher H., Wahrendorf J., Basa-Cierpialek Z. A case-control study of lung cancer with special reference to the effect of air pollution in Poland. J Epidemiol Community Health. 1990 Jun;44(2):114–120. doi: 10.1136/jech.44.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kato S., Bowman E. D., Harrington A. M., Blomeke B., Shields P. G. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo. J Natl Cancer Inst. 1995 Jun 21;87(12):902–907. doi: 10.1093/jnci/87.12.902. [DOI] [PubMed] [Google Scholar]
  23. Kawajiri K., Nakachi K., Imai K., Watanabe J., Hayashi S. The CYP1A1 gene and cancer susceptibility. Crit Rev Oncol Hematol. 1993 Feb;14(1):77–87. doi: 10.1016/1040-8428(93)90007-q. [DOI] [PubMed] [Google Scholar]
  24. Kawajiri K., Nakachi K., Imai K., Yoshii A., Shinoda N., Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett. 1990 Apr 9;263(1):131–133. doi: 10.1016/0014-5793(90)80721-t. [DOI] [PubMed] [Google Scholar]
  25. Laib R. J., Klein K. P., Bolt H. M. The rat liver foci bioassay: I. Age-dependence of induction by vinyl chloride of ATPase-deficient foci. Carcinogenesis. 1985 Jan;6(1):65–68. doi: 10.1093/carcin/6.1.65. [DOI] [PubMed] [Google Scholar]
  26. Lewtas J., Mumford J., Everson R. B., Hulka B., Wilcosky T., Kozumbo W., Thompson C., George M., Dobiás L., Srám R. Comparison of DNA adducts from exposure to complex mixtures in various human tissues and experimental systems. Environ Health Perspect. 1993 Mar;99:89–97. doi: 10.1289/ehp.939989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lutz W. K. Quantitative evaluation of DNA binding data for risk estimation and for classification of direct and indirect carcinogens. J Cancer Res Clin Oncol. 1986;112(2):85–91. doi: 10.1007/BF00404387. [DOI] [PubMed] [Google Scholar]
  28. Manchester D. K., Bowman E. D., Parker N. B., Caporaso N. E., Weston A. Determinants of polycyclic aromatic hydrocarbon-DNA adducts in human placenta. Cancer Res. 1992 Mar 15;52(6):1499–1503. [PubMed] [Google Scholar]
  29. Manchester D. K., Parker N. B., Bowman C. M. Maternal smoking increases xenobiotic metabolism in placenta but not umbilical vein endothelium. Pediatr Res. 1984 Nov;18(11):1071–1075. doi: 10.1203/00006450-198411000-00002. [DOI] [PubMed] [Google Scholar]
  30. Manchester D., Jacoby E. Decreased placental monooxygenase activities associated with birth defects. Teratology. 1984 Aug;30(1):31–37. doi: 10.1002/tera.1420300105. [DOI] [PubMed] [Google Scholar]
  31. McWilliams J. E., Sanderson B. J., Harris E. L., Richert-Boe K. E., Henner W. D. Glutathione S-transferase M1 (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol Biomarkers Prev. 1995 Sep;4(6):589–594. [PubMed] [Google Scholar]
  32. Mooney L. A., Bell D. A., Santella R. M., Van Bennekum A. M., Ottman R., Paik M., Blaner W. S., Lucier G. W., Covey L., Young T. L. Contribution of genetic and nutritional factors to DNA damage in heavy smokers. Carcinogenesis. 1997 Mar;18(3):503–509. doi: 10.1093/carcin/18.3.503. [DOI] [PubMed] [Google Scholar]
  33. Mooney L. A., Santella R. M., Covey L., Jeffrey A. M., Bigbee W., Randall M. C., Cooper T. B., Ottman R., Tsai W. Y., Wazneh L. Decline of DNA damage and other biomarkers in peripheral blood following smoking cessation. Cancer Epidemiol Biomarkers Prev. 1995 Sep;4(6):627–634. [PubMed] [Google Scholar]
  34. Nazar-Stewart V., Motulsky A. G., Eaton D. L., White E., Hornung S. K., Leng Z. T., Stapleton P., Weiss N. S. The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res. 1993 May 15;53(10 Suppl):2313–2318. [PubMed] [Google Scholar]
  35. Nebert D. W., McKinnon R. A., Puga A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol. 1996 Apr;15(4):273–280. doi: 10.1089/dna.1996.15.273. [DOI] [PubMed] [Google Scholar]
  36. Nebert D. W. Role of genetics and drug metabolism in human cancer risk. Mutat Res. 1991 Apr;247(2):267–281. doi: 10.1016/0027-5107(91)90022-g. [DOI] [PubMed] [Google Scholar]
  37. Pasanen M., Pelkonen O. The expression and environmental regulation of P450 enzymes in human placenta. Crit Rev Toxicol. 1994;24(3):211–229. doi: 10.3109/10408449409021606. [DOI] [PubMed] [Google Scholar]
  38. Perera F. P. Environment and cancer: who are susceptible? Science. 1997 Nov 7;278(5340):1068–1073. doi: 10.1126/science.278.5340.1068. [DOI] [PubMed] [Google Scholar]
  39. Perera F. P., Hemminki K., Gryzbowska E., Motykiewicz G., Michalska J., Santella R. M., Young T. L., Dickey C., Brandt-Rauf P., De Vivo I. Molecular and genetic damage in humans from environmental pollution in Poland. Nature. 1992 Nov 19;360(6401):256–258. doi: 10.1038/360256a0. [DOI] [PubMed] [Google Scholar]
  40. Perera F. P., Hemminki K., Young T. L., Brenner D., Kelly G., Santella R. M. Detection of polycyclic aromatic hydrocarbon-DNA adducts in white blood cells of foundry workers. Cancer Res. 1988 Apr 15;48(8):2288–2291. [PubMed] [Google Scholar]
  41. Perera F. P. Molecular epidemiology: insights into cancer susceptibility, risk assessment, and prevention. J Natl Cancer Inst. 1996 Apr 17;88(8):496–509. doi: 10.1093/jnci/88.8.496. [DOI] [PubMed] [Google Scholar]
  42. Perera F. P., Santella R. M., Brenner D., Poirier M. C., Munshi A. A., Fischman H. K., Van Ryzin J. DNA adducts, protein adducts, and sister chromatid exchange in cigarette smokers and nonsmokers. J Natl Cancer Inst. 1987 Sep;79(3):449–456. [PubMed] [Google Scholar]
  43. Perera F. P., Whyatt R. M., Jedrychowski W., Rauh V., Manchester D., Santella R. M., Ottman R. Recent developments in molecular epidemiology: A study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am J Epidemiol. 1998 Feb 1;147(3):309–314. doi: 10.1093/oxfordjournals.aje.a009451. [DOI] [PubMed] [Google Scholar]
  44. Persson I., Johansson I., Ingelman-Sundberg M. In vitro kinetics of two human CYP1A1 variant enzymes suggested to be associated with interindividual differences in cancer susceptibility. Biochem Biophys Res Commun. 1997 Feb 3;231(1):227–230. doi: 10.1006/bbrc.1997.6051. [DOI] [PubMed] [Google Scholar]
  45. Poirier M. C., Beland F. A. DNA adduct measurements and tumor incidence during chronic carcinogen exposure in animal models: implications for DNA adduct-based human cancer risk assessment. Chem Res Toxicol. 1992 Nov-Dec;5(6):749–755. doi: 10.1021/tx00030a003. [DOI] [PubMed] [Google Scholar]
  46. Robertson I. G., Guthenberg C., Mannervik B., Jernström B. Differences in stereoselectivity and catalytic efficiency of three human glutathione transferases in the conjugation of glutathione with 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Cancer Res. 1986 May;46(5):2220–2224. [PubMed] [Google Scholar]
  47. Rothman N., Shields P. G., Poirier M. C., Harrington A. M., Ford D. P., Strickland P. T. The impact of glutathione s-transferase M1 and cytochrome P450 1A1 genotypes on white-blood-cell polycyclic aromatic hydrocarbon-DNA adduct levels in humans. Mol Carcinog. 1995 Sep;14(1):63–68. doi: 10.1002/mc.2940140111. [DOI] [PubMed] [Google Scholar]
  48. Santella R. M., Gasparo F., Hsieh L. L. Quantitation of carcinogen-DNA adducts with monoclonal antibodies. Prog Exp Tumor Res. 1987;31:63–75. doi: 10.1159/000413904. [DOI] [PubMed] [Google Scholar]
  49. Sanyal M. K., Li Y. L., Belanger K. Metabolism of polynuclear aromatic hydrocarbon in human term placenta influenced by cigarette smoke exposure. Reprod Toxicol. 1994 Sep-Oct;8(5):411–418. doi: 10.1016/0890-6238(94)90081-7. [DOI] [PubMed] [Google Scholar]
  50. Scherer G., Conze C., Tricker A. R., Adlkofer F. Uptake of tobacco smoke constituents on exposure to environmental tobacco smoke (ETS). Clin Investig. 1992 Mar-Apr;70(3-4):352–367. doi: 10.1007/BF00184672. [DOI] [PubMed] [Google Scholar]
  51. Seidegård J., Pero R. W., Markowitz M. M., Roush G., Miller D. G., Beattie E. J. Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the susceptibility to lung cancer: a follow up study. Carcinogenesis. 1990 Jan;11(1):33–36. doi: 10.1093/carcin/11.1.33. [DOI] [PubMed] [Google Scholar]
  52. Shamsuddin A. K., Gan R. Immunocytochemical localization of benzo(a)pyrene-DNA adducts in human tissue. Hum Pathol. 1988 Mar;19(3):309–315. doi: 10.1016/s0046-8177(88)80524-0. [DOI] [PubMed] [Google Scholar]
  53. Shields P. G., Bowman E. D., Harrington A. M., Doan V. T., Weston A. Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res. 1993 Aug 1;53(15):3486–3492. [PubMed] [Google Scholar]
  54. Shields P. G., Caporaso N. E., Falk R. T., Sugimura H., Trivers G. E., Trump B. F., Hoover R. N., Weston A., Harris C. C. Lung cancer, race, and a CYP1A1 genetic polymorphism. Cancer Epidemiol Biomarkers Prev. 1993 Sep-Oct;2(5):481–485. [PubMed] [Google Scholar]
  55. Shum S., Jensen N. M., Nebert D. W. The murine Ah locus: in utero toxicity and teratogenesis associated with genetic differences in benzo[a]pyrene metabolism. Teratology. 1979 Dec;20(3):365–376. doi: 10.1002/tera.1420200307. [DOI] [PubMed] [Google Scholar]
  56. Simeonova M., Georgieva V., Alexiev C. Cytogenetic investigations of human subjects occupationally exposed to chemicals from the petroleum-processing industry. Environ Res. 1989 Apr;48(2):145–153. doi: 10.1016/s0013-9351(89)80030-1. [DOI] [PubMed] [Google Scholar]
  57. Sorsa M., Husgafvel-Pursiainen K., Järventaus H., Koskimies K., Salo H., Vainio H. Cytogenetic effects of tobacco smoke exposure among involuntary smokers. Mutat Res. 1989 Feb;222(2):111–116. doi: 10.1016/0165-1218(89)90024-4. [DOI] [PubMed] [Google Scholar]
  58. Srivastava V. K., Chauhan S. S., Srivastava P. K., Kumar V., Misra U. K. Fetal translocation and metabolism of PAH obtained from coal fly ash given intratracheally to pregnant rats. J Toxicol Environ Health. 1986;18(3):459–469. doi: 10.1080/15287398609530885. [DOI] [PubMed] [Google Scholar]
  59. Tang D., Santella R. M., Blackwood A. M., Young T. L., Mayer J., Jaretzki A., Grantham S., Tsai W. Y., Perera F. P. A molecular epidemiological case-control study of lung cancer. Cancer Epidemiol Biomarkers Prev. 1995 Jun;4(4):341–346. [PubMed] [Google Scholar]
  60. Tefre T., Ryberg D., Haugen A., Nebert D. W., Skaug V., Brøgger A., Børresen A. L. Human CYP1A1 (cytochrome P(1)450) gene: lack of association between the Msp I restriction fragment length polymorphism and incidence of lung cancer in a Norwegian population. Pharmacogenetics. 1991 Oct;1(1):20–25. doi: 10.1097/00008571-199110000-00004. [DOI] [PubMed] [Google Scholar]
  61. Whyatt R. M., Garte S. J., Cosma G., Bell D. A., Jedrychowski W., Wahrendorf J., Randall M. C., Cooper T. B., Ottman R., Tang D. CYP1A1 messenger RNA levels in placental tissue as a biomarker of environmental exposure. Cancer Epidemiol Biomarkers Prev. 1995 Mar;4(2):147–153. [PubMed] [Google Scholar]
  62. York R. G., Manson J. M. Neonatal toxicity in mice associated with the Ahb allele following transplacental exposure to 3-methylcholanthrene. Toxicol Appl Pharmacol. 1984 Mar 15;72(3):417–426. doi: 10.1016/0041-008x(84)90118-2. [DOI] [PubMed] [Google Scholar]
  63. Zhong S., Howie A. F., Ketterer B., Taylor J., Hayes J. D., Beckett G. J., Wathen C. G., Wolf C. R., Spurr N. K. Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis. 1991 Sep;12(9):1533–1537. doi: 10.1093/carcin/12.9.1533. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES