Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 May;106(5):279–289. doi: 10.1289/ehp.98106279

Profiles of Great Lakes critical pollutants: a sentinel analysis of human blood and urine. The Great Lakes Consortium.

H A Anderson 1, C Falk 1, L Hanrahan 1, J Olson 1, V W Burse 1, L Needham 1, D Paschal 1, D Patterson Jr 1, R H Hill Jr 1
PMCID: PMC1533095  PMID: 9560354

Abstract

To determine the contaminants that should be studied further in the subsequent population-based study, a profile of Great Lakes (GL) sport fish contaminant residues were studied in human blood and urine specimens from 32 sport fish consumers from three Great Lakes: Lake Michigan (n = 10), Lake Huron (n = 11), and Lake Erie (n = 11). Serum was analyzed for 8 polychlorinated dioxin congeners, 10 polychlorinated furan congeners, 4 coplanar and 32 other polychlorinated biphenyl (PCB) congeners, and 11 persistent chlorinated pesticides. Whole blood was analyzed for mercury and lead. Urine samples were analyzed for 10 nonpersistent pesticides (or their metabolites) and 5 metals. One individual was excluded from statistical analysis because of an unusual exposure to selected analytes. Overall, the sample (n = 31) consumed, on average, 49 GL sport fish meals per year for a mean of 33 years. On average, the general population in the GL basin consume 6 meals of GL sport fish per year. The mean tissue levels of most persistent, bioaccumulative compounds also found in GL sport fish ranged from less than a twofold increase to that of PCB 126, which was eight times the selected background levels found in the general population. The overall mean total toxic equivalent for dioxins, furans, and coplanar PCBs were greater than selected background levels in the general population (dioxins, 1.8 times; furans, 2.4 times; and coplanar PCBs, 9.6 times). The nonpersistent pesticides and most metals were not identified in unusual concentrations. A contaminant pattern among lake subgroups was evident. Lake Erie sport fish consumers had consistently lower contaminant concentrations than consumers of sport fish from Lake Michigan and Huron. These interlake differences are consistent with contaminant patterns seen in sport fish tissue from the respective lakes; GL sport fish consumption was the most likely explanation for observed contaminant levels among this sample. Frequent consumers of sport fish proved to be effective sentinels for identifying sport fish contaminants of concern. In the larger study to follow, serum samples will be tested for PCBs (congener specific and coplanar), DDE, dioxin, and furans.

Full text

PDF
279

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akins J. R., Waldrep K., Bernert J. T., Jr The estimation of total serum lipids by a completely enzymatic 'summation' method. Clin Chim Acta. 1989 Oct 16;184(3):219–226. doi: 10.1016/0009-8981(89)90054-5. [DOI] [PubMed] [Google Scholar]
  2. Brody D. J., Pirkle J. L., Kramer R. A., Flegal K. M., Matte T. D., Gunter E. W., Paschal D. C. Blood lead levels in the US population. Phase 1 of the Third National Health and Nutrition Examination Survey (NHANES III, 1988 to 1991) JAMA. 1994 Jul 27;272(4):277–283. doi: 10.1001/jama.272.4.277. [DOI] [PubMed] [Google Scholar]
  3. Burse V. W., Groce D. F., Korver M. P., McClure P. C., Head S. L., Needham L. L., Lapeza C. R., Jr, Smrek A. L. Use of reference pools to compare the qualitative and quantitative determination of polychlorinated biphenyls by packed and capillary gas chromatography with electron capture detection. Part 1. Serum. Analyst. 1990 Mar;115(3):243–251. doi: 10.1039/an9901500243. [DOI] [PubMed] [Google Scholar]
  4. Burse V. W., Head S. L., Korver M. P., McClure P. C., Donahue J. F., Needham L. L. Determination of selected organochlorine pesticides and polychlorinated biphenyls in human serum. J Anal Toxicol. 1990 May-Jun;14(3):137–142. doi: 10.1093/jat/14.3.137. [DOI] [PubMed] [Google Scholar]
  5. Fiore B. J., Anderson H. A., Hanrahan L. P., Olson L. J., Sonzogni W. C. Sport fish consumption and body burden levels of chlorinated hydrocarbons: a study of Wisconsin anglers. Arch Environ Health. 1989 Mar-Apr;44(2):82–88. doi: 10.1080/00039896.1989.9934380. [DOI] [PubMed] [Google Scholar]
  6. Hill R. H., Jr, Shealy D. B., Head S. L., Williams C. C., Bailey S. L., Gregg M., Baker S. E., Needham L. L. Determination of pesticide metabolites in human urine using an isotope dilution technique and tandem mass spectrometry. J Anal Toxicol. 1995 Sep;19(5):323–329. doi: 10.1093/jat/19.5.323. [DOI] [PubMed] [Google Scholar]
  7. Hovinga M. E., Sowers M., Humphrey H. E. Environmental exposure and lifestyle predictors of lead, cadmium, PCB, and DDT levels in Great Lakes fish eaters. Arch Environ Health. 1993 Mar-Apr;48(2):98–104. doi: 10.1080/00039896.1993.9938402. [DOI] [PubMed] [Google Scholar]
  8. Hovinga M. E., Sowers M., Humphrey H. E. Historical changes in serum PCB and DDT levels in an environmentally-exposed cohort. Arch Environ Contam Toxicol. 1992 May;22(4):362–366. doi: 10.1007/BF00212554. [DOI] [PubMed] [Google Scholar]
  9. Littlejohn D., Fell G. S., Ottaway J. M. Modified determination of total and inorganic mercury in urine by cold vapor atomic absorption sectrometry. Clin Chem. 1976 Oct;22(10):1719–1723. [PubMed] [Google Scholar]
  10. Miller D. T., Paschal D. C., Gunter E. W., Stroud P. E., D'Angelo J. Determination of lead in blood using electrothermal atomisation atomic absorption spectrometry with a L'vov platform and matrix modifier. Analyst. 1987 Dec;112(12):1701–1704. doi: 10.1039/an9871201701. [DOI] [PubMed] [Google Scholar]
  11. Needham L. L., Patterson D. G., Jr, Burse V. W., Paschal D. C., Turner W. E., Hill R. H., Jr Reference range data for assessing exposure to selected environmental toxicants. Toxicol Ind Health. 1996 May-Aug;12(3-4):507–513. doi: 10.1177/074823379601200322. [DOI] [PubMed] [Google Scholar]
  12. Newsome W. H., Davies D., Doucet J. PCB and organochlorine pesticides in Canadian human milk--1992. Chemosphere. 1995 Jun;30(11):2143–2153. doi: 10.1016/0045-6535(95)00086-n. [DOI] [PubMed] [Google Scholar]
  13. Paschal D. C., Bailey G. G. Determination of nickel in urine with graphite furnace AAS using Zeeman correction. Sci Total Environ. 1989 Dec 15;89(3):305–310. doi: 10.1016/0048-9697(89)90270-2. [DOI] [PubMed] [Google Scholar]
  14. Paschal D. C., Ting B. G., Morrow J. C., Pirkle J. L., Jackson R. J., Sampson E. J., Miller D. T., Caldwell K. L. Trace metals in urine of United States residents: reference range concentrations. Environ Res. 1998 Jan;76(1):53–59. doi: 10.1006/enrs.1997.3793. [DOI] [PubMed] [Google Scholar]
  15. Patterson D. G., Jr, Hampton L., Lapeza C. R., Jr, Belser W. T., Green V., Alexander L., Needham L. L. High-resolution gas chromatographic/high-resolution mass spectrometric analysis of human serum on a whole-weight and lipid basis for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal Chem. 1987 Aug 1;59(15):2000–2005. doi: 10.1021/ac00142a023. [DOI] [PubMed] [Google Scholar]
  16. Phillips L. J., Birchard G. F. Regional variations in human toxics exposure in the USA: an analysis based on the National Human Adipose Tissue Survey. Arch Environ Contam Toxicol. 1991 Aug;21(2):159–168. doi: 10.1007/BF01055332. [DOI] [PubMed] [Google Scholar]
  17. Pruszkowska E., Carnrick G. R., Slavin W. Direct determination of cadmium in urine with use of a stabilized temperature platform furnace and Zeeman background correction. Clin Chem. 1983 Mar;29(3):477–480. [PubMed] [Google Scholar]
  18. Sunderman F. W., Jr A review of the metabolism and toxicology of nickel. Ann Clin Lab Sci. 1977 Sep-Oct;7(5):377–398. [PubMed] [Google Scholar]
  19. Tilden J., Hanrahan L. P., Anderson H., Palit C., Olson J., Kenzie W. M. Health advisories for consumers of Great Lakes sport fish: is the message being received? Environ Health Perspect. 1997 Dec;105(12):1360–1365. doi: 10.1289/ehp.971051360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wolff M. S., Anderson H. A., Selikoff I. J. Human tissue burdens of halogenated aromatic chemicals in Michigan. JAMA. 1982 Apr 16;247(15):2112–2116. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES