Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Feb;106(Suppl 1):331–339. doi: 10.1289/ehp.98106s1331

Hierarchical and cybernetic nature of biologic systems and their relevance to homeostatic adaptation to low-level exposures to oxidative stress-inducing agents.

J E Trosko 1
PMCID: PMC1533301  PMID: 9539027

Abstract

During evolution in an aerobic environment, multicellular organisms survived by adaptive responses to both the endogenous oxidative metabolism in the cells of the organism and the chemicals and low-level radiation to which they had been exposed. The defense repertoire exists at all levels of the biological hierarchy--from the molecular and biochemical level to the cellular and tissue level to the organ and organ system level. Cells contain preventive antioxidants to suppress oxidative damage to membranes. Cells also contain proteins and DNA; built-in redundancies for damaged molecules and organelles; tightly coupled redox systems; pools of reductants; antioxidants; DNA repair mechanisms and sensitive sensor molecules such as nuclear factor kappa beta; and signal transduction mechanisms affecting both transcription and post-translational modification of proteins needed to cope with oxidative stress. The biologic consequences of the low-level radiation that exceeds the background level of oxidative damage could be necrosis or apoptosis, cell proliferation, or cell differentiation. These effects are triggered by oxidative stress-induced signal transduction mechanisms--an epigenetic, not genotoxic, process. If the end points of cell proliferation, differentiation, or cell death are not seen at frequencies above background levels in an organism, it is unlikely that low-level radiation would play a role in the multistep processes of chronic diseases such as cancer. The mechanism linked to homeostatic regulation of proliferation and adaptive functions in a multicellular organism could provide protection of any one cell receiving deposited energy by the radiation tract through the sharing of reductants and by triggering apoptosis of target stem cells. Examples of the role of gap junctional intercellular communication in the adaptive response of cells and the bystander effect illustrate how the interaction of cells can modulate the effect of radiation on the single cell.

Full text

PDF
331

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Imagawa M., Chiu R., Stein B., Imbra R. J., Rahmsdorf H. J., Jonat C., Herrlich P., Karin M. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell. 1987 Jun 19;49(6):729–739. doi: 10.1016/0092-8674(87)90611-8. [DOI] [PubMed] [Google Scholar]
  2. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991 Dec 10;1072(2-3):129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
  3. Aylsworth C. F., Trosko J. E., Chang C. C., Benjamin K., Lockwood E. Synergistic inhibition of metabolic cooperation by oleic acid or 12-0-tetradecanoylphorbol-13-acetate and dichlorodiphenyltrichlorethane (DDT) in Chinese hamster V79 cells: implication of a role for protein kinase C in the regulation of gap junctional intercellular communication. Cell Biol Toxicol. 1989 Jan;5(1):27–37. doi: 10.1007/BF00141062. [DOI] [PubMed] [Google Scholar]
  4. Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
  5. Barhoumi R., Bailey H. R., Hutchinson R. W., Bowen J. A., Burghardt R. C. Enhancement of melphalan toxicity by octanol in ovarian adenocarcinoma cell lines: effects of altered cell-cell communication, glutathione levels, and plasma membrane fluidity. Fundam Appl Toxicol. 1995 Apr;25(1):70–79. doi: 10.1006/faat.1995.1041. [DOI] [PubMed] [Google Scholar]
  6. Bergelson S., Pinkus R., Daniel V. Intracellular glutathione levels regulate Fos/Jun induction and activation of glutathione S-transferase gene expression. Cancer Res. 1994 Jan 1;54(1):36–40. [PubMed] [Google Scholar]
  7. Bergoffen J., Scherer S. S., Wang S., Scott M. O., Bone L. J., Paul D. L., Chen K., Lensch M. W., Chance P. F., Fischbeck K. H. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science. 1993 Dec 24;262(5142):2039–2042. doi: 10.1126/science.8266101. [DOI] [PubMed] [Google Scholar]
  8. Bloch A. Induced cell differentiation in cancer therapy. Cancer Treat Rep. 1984 Jan;68(1):199–205. [PubMed] [Google Scholar]
  9. Borek C., Sachs L. The difference in contact inhibition of cell replication between normal cells and cells transformed by different carcinogens. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1705–1711. doi: 10.1073/pnas.56.6.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Boulikas T. Xeroderma pigmentosum and molecular cloning of DNA repair genes. Anticancer Res. 1996 Mar-Apr;16(2):693–708. [PubMed] [Google Scholar]
  11. Boutwell R. K. The function and mechanism of promoters of carcinogenesis. CRC Crit Rev Toxicol. 1974 Jan;2(4):419–443. doi: 10.3109/10408447309025704. [DOI] [PubMed] [Google Scholar]
  12. Britz-Cunningham S. H., Shah M. M., Zuppan C. W., Fletcher W. H. Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med. 1995 May 18;332(20):1323–1329. doi: 10.1056/NEJM199505183322002. [DOI] [PubMed] [Google Scholar]
  13. Brody H. The systems view of man: implications for medicine, science, and ethics. Perspect Biol Med. 1973 Autumn;17(1):71–92. doi: 10.1353/pbm.1973.0007. [DOI] [PubMed] [Google Scholar]
  14. Bursch W., Oberhammer F., Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol Sci. 1992 Jun;13(6):245–251. doi: 10.1016/0165-6147(92)90077-j. [DOI] [PubMed] [Google Scholar]
  15. Buttke T. M., Sandstrom P. A. Redox regulation of programmed cell death in lymphocytes. Free Radic Res. 1995 May;22(5):389–397. doi: 10.3109/10715769509147548. [DOI] [PubMed] [Google Scholar]
  16. Cai L., Wang P. Induction of a cytogenetic adaptive response in germ cells of irradiated mice with very low-dose rate of chronic gamma-irradiation and its biological influence on radiation-induced DNA or chromosomal damage and cell killing in their male offspring. Mutagenesis. 1995 Mar;10(2):95–100. doi: 10.1093/mutage/10.2.95. [DOI] [PubMed] [Google Scholar]
  17. Chang C. C., Trosko J. E., el-Fouly M. H., Gibson-D'Ambrosio R. E., D'Ambrosio S. M. Contact insensitivity of a subpopulation of normal human fetal kidney epithelial cells and of human carcinoma cell lines. Cancer Res. 1987 Mar 15;47(6):1634–1645. [PubMed] [Google Scholar]
  18. Del Rizzo D. F., Eskinazi D., Axelrad A. A. Negative regulation of DNA synthesis in early erythropoietic progenitor cells (BFU-E) by a protein purified from the medium of C57BL/6 mouse marrow cells. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4320–4324. doi: 10.1073/pnas.85.12.4320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Devary Y., Gottlieb R. A., Smeal T., Karin M. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell. 1992 Dec 24;71(7):1081–1091. doi: 10.1016/s0092-8674(05)80058-3. [DOI] [PubMed] [Google Scholar]
  20. Feinendegen L. E., Loken M. K., Booz J., Mühlensiepen H., Sondhaus C. A., Bond V. P. Cellular mechanisms of protection and repair induced by radiation exposure and their consequences for cell system responses. Stem Cells. 1995 May;13 (Suppl 1):7–20. [PubMed] [Google Scholar]
  21. Fialkow P. J. Clonal origin of human tumors. Annu Rev Med. 1979;30:135–143. doi: 10.1146/annurev.me.30.020179.001031. [DOI] [PubMed] [Google Scholar]
  22. Godar D. E., Lucas A. D. Spectral dependence of UV-induced immediate and delayed apoptosis: the role of membrane and DNA damage. Photochem Photobiol. 1995 Jul;62(1):108–113. doi: 10.1111/j.1751-1097.1995.tb05246.x. [DOI] [PubMed] [Google Scholar]
  23. Gotelli C. A., Astolfi E., Cox C., Cernichiari E., Clarkson T. W. Early biochemical effects of an organic mercury fungicide on infants: "dose makes the poison". Science. 1985 Feb 8;227(4687):638–640. doi: 10.1126/science.2857500. [DOI] [PubMed] [Google Scholar]
  24. Hanawalt P. C. DNA repair comes of age. Mutat Res. 1995 Mar;336(2):101–113. doi: 10.1016/0921-8777(94)00061-a. [DOI] [PubMed] [Google Scholar]
  25. Hart R. W., Keenan K., Turturro A., Abdo K. M., Leakey J., Lyn-Cook B. Caloric restriction and toxicity. Fundam Appl Toxicol. 1995 May;25(2):184–195. doi: 10.1006/faat.1995.1054. [DOI] [PubMed] [Google Scholar]
  26. Herrlich P., Rahmsdorf H. J. Transcriptional and post-transcriptional responses to DNA-damaging agents. Curr Opin Cell Biol. 1994 Jun;6(3):425–431. doi: 10.1016/0955-0674(94)90036-1. [DOI] [PubMed] [Google Scholar]
  27. Hill C. S., Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995 Jan 27;80(2):199–211. doi: 10.1016/0092-8674(95)90403-4. [DOI] [PubMed] [Google Scholar]
  28. Hoffman R. M. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta. 1984;738(1-2):49–87. doi: 10.1016/0304-419x(84)90019-2. [DOI] [PubMed] [Google Scholar]
  29. Hu J., Cotgreave I. A. Glutathione depletion potentiates 12-O-tetradecanoyl phorbol-13-acetate(TPA)-induced inhibition of gap junctional intercellular communication in WB-F344 rat liver epithelial cells: relationship to intracellular oxidative stress. Chem Biol Interact. 1995 Apr 14;95(3):291–307. doi: 10.1016/0009-2797(94)03568-s. [DOI] [PubMed] [Google Scholar]
  30. Hu J., Engman L., Cotgreave I. A. Redox-active chalcogen-containing glutathione peroxidase mimetics and antioxidants inhibit tumour promoter-induced downregulation of gap junctional intercellular communication between WB-F344 liver epithelial cells. Carcinogenesis. 1995 Aug;16(8):1815–1824. doi: 10.1093/carcin/16.8.1815. [DOI] [PubMed] [Google Scholar]
  31. Ishii K., Watanabe M. Participation of gap-junctional cell communication on the adaptive response in human cells induced by low dose of X-rays. Int J Radiat Biol. 1996 Mar;69(3):291–299. doi: 10.1080/095530096145841. [DOI] [PubMed] [Google Scholar]
  32. Kao C. Y., Nomata K., Oakley C. S., Welsch C. W., Chang C. C. Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis. 1995 Mar;16(3):531–538. doi: 10.1093/carcin/16.3.531. [DOI] [PubMed] [Google Scholar]
  33. Kavanagh T. J., Martin G. M., Livesey J. C., Rabinovitch P. S. Direct evidence of intercellular sharing of glutathione via metabolic cooperation. J Cell Physiol. 1988 Nov;137(2):353–359. doi: 10.1002/jcp.1041370220. [DOI] [PubMed] [Google Scholar]
  34. Keski-Oja J., Moses H. L. Growth inhibitory polypeptides in the regulation of cell proliferation. Med Biol. 1987;65(1):13–20. [PubMed] [Google Scholar]
  35. Kimchi A., Wang X. F., Weinberg R. A., Cheifetz S., Massagué J. Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. Science. 1988 Apr 8;240(4849):196–199. doi: 10.1126/science.2895499. [DOI] [PubMed] [Google Scholar]
  36. Kojima T., Mitaka T., Mizuguchi T., Mochizuki Y. Effects of oxygen radical scavengers on connexins 32 and 26 expression in primary cultures of adult rat hepatocytes. Carcinogenesis. 1996 Mar;17(3):537–544. doi: 10.1093/carcin/17.3.537. [DOI] [PubMed] [Google Scholar]
  37. Kolaja K. L., Stevenson D. E., Walborg E. F., Jr, Klaunig J. E. Dose dependence of phenobarbital promotion of preneoplastic hepatic lesions in F344 rats and B6C3F1 mice: effects on DNA synthesis and apoptosis. Carcinogenesis. 1996 May;17(5):947–954. doi: 10.1093/carcin/17.5.947. [DOI] [PubMed] [Google Scholar]
  38. Kumar N. M., Gilula N. B. The gap junction communication channel. Cell. 1996 Feb 9;84(3):381–388. doi: 10.1016/s0092-8674(00)81282-9. [DOI] [PubMed] [Google Scholar]
  39. Kwak H. S., Yim H. S., Chock P. B., Yim M. B. Endogenous intracellular glutathionyl radicals are generated in neuroblastoma cells under hydrogen peroxide oxidative stress. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4582–4586. doi: 10.1073/pnas.92.10.4582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Loewenstein W. R. Junctional intercellular communication and the control of growth. Biochim Biophys Acta. 1979 Feb 4;560(1):1–65. doi: 10.1016/0304-419x(79)90002-7. [DOI] [PubMed] [Google Scholar]
  41. Maekawa A., Onodera H., Ogasawara H., Matsushima Y., Mitsumori K., Hayashi Y. Threshold dose dependence in phenobarbital promotion of rat hepatocarcinogenesis initiated by diethylnitrosamine. Carcinogenesis. 1992 Mar;13(3):501–503. doi: 10.1093/carcin/13.3.501. [DOI] [PubMed] [Google Scholar]
  42. Miccadei S., Kyle M. E., Gilfor D., Farber J. L. Toxic consequence of the abrupt depletion of glutathione in cultured rat hepatocytes. Arch Biochem Biophys. 1988 Sep;265(2):311–320. doi: 10.1016/0003-9861(88)90133-6. [DOI] [PubMed] [Google Scholar]
  43. Nakano S., Ueo H., Bruce S. A., Ts'o P. O. A contact-insensitive subpopulation in Syrian hamster cell cultures with a greater susceptibility to chemically induced neoplastic transformation. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5005–5009. doi: 10.1073/pnas.82.15.5005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Naus C. C., Bechberger J. F., Paul D. L. Gap junction gene expression in human seizure disorder. Exp Neurol. 1991 Feb;111(2):198–203. doi: 10.1016/0014-4886(91)90007-y. [DOI] [PubMed] [Google Scholar]
  45. Ohkusa T., Yamamoto M., Kataoka K., Kyoi T., Ueda F., Fujimoto H., Sasabe M., Tamura Y., Hosoi H., Tokoi S. Electron microscopic study of intercellular junctions in human gastric mucosa with special reference to their relationship to gastric ulcer. Gut. 1993 Jan;34(1):86–89. doi: 10.1136/gut.34.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Potten C. S., Merritt A., Hickman J., Hall P., Faranda A. Characterization of radiation-induced apoptosis in the small intestine and its biological implications. Int J Radiat Biol. 1994 Jan;65(1):71–78. doi: 10.1080/09553009414550101. [DOI] [PubMed] [Google Scholar]
  47. Potter V. R. Cancer as a problem in intercellular communication: regulation by growth-inhibiting factors (Chalones). Prog Nucleic Acid Res Mol Biol. 1983;29:161–173. doi: 10.1016/s0079-6603(08)60445-6. [DOI] [PubMed] [Google Scholar]
  48. Potter V. R. Initiation and promotion in cancer formation: the importance of studies on intercellular communication. Yale J Biol Med. 1980 Sep-Oct;53(5):367–384. [PMC free article] [PubMed] [Google Scholar]
  49. Potter V. R. Probabilistic aspects of the human cybernetic machine. Perspect Biol Med. 1974 Winter;17(2):164–183. doi: 10.1353/pbm.1974.0023. [DOI] [PubMed] [Google Scholar]
  50. Ramakrishnan N., McClain D. E., Catravas G. N. Membranes as sensitive targets in thymocyte apoptosis. Int J Radiat Biol. 1993 Jun;63(6):693–701. doi: 10.1080/09553009314552091. [DOI] [PubMed] [Google Scholar]
  51. Reif A. E. Synergism in carcinogenesis. J Natl Cancer Inst. 1984 Jul;73(1):25–39. [PubMed] [Google Scholar]
  52. Rennick D., Yang G., Muller-Sieburg C., Smith C., Arai N., Takabe Y., Gemmell L. Interleukin 4 (B-cell stimulatory factor 1) can enhance or antagonize the factor-dependent growth of hemopoietic progenitor cells. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6889–6893. doi: 10.1073/pnas.84.19.6889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schmitz M. L. Function and activation of the transcription factor NF-kappa B in the response to toxins and pathogens. Toxicol Lett. 1995 Dec;82-83:407–411. doi: 10.1016/0378-4274(95)03491-9. [DOI] [PubMed] [Google Scholar]
  54. Sehlmeyer U., Wobus A. M. Lower mutation frequencies are induced by ENU in undifferentiated embryonic cells than in differentiated cells of the mouse in vitro. Mutat Res. 1994 Jun;324(1-2):69–76. doi: 10.1016/0165-7992(94)90070-1. [DOI] [PubMed] [Google Scholar]
  55. Selinfreund R., Wharton W. Effects of 12-O-tetradecanoylphorbol-13-acetate on epidermal growth factor receptors in BALB/c-3T3 cells: relationship between receptor modulation and mitogenesis. Cancer Res. 1986 Sep;46(9):4486–4490. [PubMed] [Google Scholar]
  56. Sell S. Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect. 1993 Dec;101 (Suppl 5):15–26. doi: 10.1289/ehp.93101s515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sisskin E. E., Gray T., Barrett J. C. Correlation between sensitivity to tumor promotion and sustained epidermal hyperplasia of mice and rats treated with 12-O-tetra-decanoylphorbol-13-acetate. Carcinogenesis. 1982;3(4):403–407. doi: 10.1093/carcin/3.4.403. [DOI] [PubMed] [Google Scholar]
  58. Smith J. H., Green C. R., Peters N. S., Rothery S., Severs N. J. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol. 1991 Oct;139(4):801–821. [PMC free article] [PubMed] [Google Scholar]
  59. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Somosy Z., Kovács J., Siklós L., Köteles G. J. Morphological and histochemical changes in intercellular junctional complexes in epithelial cells of mouse small intestine upon X-irradiation: changes of ruthenium red permeability and calcium content. Scanning Microsc. 1993 Sep;7(3):961–971. [PubMed] [Google Scholar]
  61. Trosko J. E. Challenge to the simple paradigm that 'carcinogens' are 'mutagens' and to the in vitro and in vivo assays used to test the paradigm. Mutat Res. 1997 Feb 3;373(2):245–249. doi: 10.1016/s0027-5107(96)00203-5. [DOI] [PubMed] [Google Scholar]
  62. Trosko J. E., Chang C. C., Medcalf A. Mechanisms of tumor promotion: potential role of intercellular communication. Cancer Invest. 1983;1(6):511–526. doi: 10.3109/07357908309020276. [DOI] [PubMed] [Google Scholar]
  63. Trosko J. E., Chang C. C., Netzloff M. The role of inhibited cell-cell communication in teratogenesis. Teratog Carcinog Mutagen. 1982;2(1):31–45. doi: 10.1002/1520-6866(1990)2:1<31::aid-tcm1770020105>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  64. Trosko J. E., Chang C. C. Stem cell theory of carcinogenesis. Toxicol Lett. 1989 Dec;49(2-3):283–295. doi: 10.1016/0378-4274(89)90038-6. [DOI] [PubMed] [Google Scholar]
  65. Trosko J. E., Goodman J. I. Intercellular communication may facilitate apoptosis: implications for tumor promotion. Mol Carcinog. 1994 Sep;11(1):8–12. doi: 10.1002/mc.2940110103. [DOI] [PubMed] [Google Scholar]
  66. Trosko J. E. Role of low-level ionizing radiation in multi-step carcinogenic process. Health Phys. 1996 Jun;70(6):812–822. doi: 10.1097/00004032-199606000-00005. [DOI] [PubMed] [Google Scholar]
  67. Tyrrell R. M., Pidoux M. Correlation between endogenous glutathione content and sensitivity of cultured human skin cells to radiation at defined wavelengths in the solar ultraviolet range. Photochem Photobiol. 1988 Mar;47(3):405–412. doi: 10.1111/j.1751-1097.1988.tb02744.x. [DOI] [PubMed] [Google Scholar]
  68. Uckun F. M., Tuel-Ahlgren L., Song C. W., Waddick K., Myers D. E., Kirihara J., Ledbetter J. A., Schieven G. L. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9005–9009. doi: 10.1073/pnas.89.19.9005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Warner A. E., Guthrie S. C., Gilula N. B. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature. 1984 Sep 13;311(5982):127–131. doi: 10.1038/311127a0. [DOI] [PubMed] [Google Scholar]
  70. Weichselbaum R. R., Hallahan D. E., Sukhatme V., Dritschilo A., Sherman M. L., Kufe D. W. Biological consequences of gene regulation after ionizing radiation exposure. J Natl Cancer Inst. 1991 Apr 3;83(7):480–484. doi: 10.1093/jnci/83.7.480. [DOI] [PubMed] [Google Scholar]
  71. Weinberg R. A. Tumor suppressor genes. Science. 1991 Nov 22;254(5035):1138–1146. doi: 10.1126/science.1659741. [DOI] [PubMed] [Google Scholar]
  72. Witkop C. J., Jr, White J. G., King R. A., Dahl M. V., Young W. G., Sauk J. J., Jr Hereditary mucoepithelial dysplasia: a disease apparently of desmosome and gap junction formation. Am J Hum Genet. 1979 Jul;31(4):414–427. [PMC free article] [PubMed] [Google Scholar]
  73. Woloschak G. E., Chang-Liu C. M., Shearin-Jones P. Regulation of protein kinase C by ionizing radiation. Cancer Res. 1990 Jul 1;50(13):3963–3967. [PubMed] [Google Scholar]
  74. Wärngård L., Flodström S., Ljungquist S., Ahlborg U. G. Interaction between quercetin, TPA and DDT in the V79 metabolic cooperation assay. Carcinogenesis. 1987 Sep;8(9):1201–1205. doi: 10.1093/carcin/8.9.1201. [DOI] [PubMed] [Google Scholar]
  75. Yamasaki H., Naus C. C. Role of connexin genes in growth control. Carcinogenesis. 1996 Jun;17(6):1199–1213. doi: 10.1093/carcin/17.6.1199. [DOI] [PubMed] [Google Scholar]
  76. Yotti L. P., Chang C. C., Trosko J. E. Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter. Science. 1979 Nov 30;206(4422):1089–1091. doi: 10.1126/science.493994. [DOI] [PubMed] [Google Scholar]
  77. Yuspa S. H., Morgan D. L. Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature. 1981 Sep 3;293(5827):72–74. doi: 10.1038/293072a0. [DOI] [PubMed] [Google Scholar]
  78. de Carvalho A. C., Tanowitz H. B., Wittner M., Dermietzel R., Roy C., Hertzberg E. L., Spray D. C. Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi. Circ Res. 1992 Apr;70(4):733–742. doi: 10.1161/01.res.70.4.733. [DOI] [PubMed] [Google Scholar]
  79. de Rooij D. G., Lok D., Weenk D. Feedback regulation of the proliferation of the undifferentiated spermatogonia in the Chinese hamster by the differentiating spermatogonia. Cell Tissue Kinet. 1985 Jan;18(1):71–81. doi: 10.1111/j.1365-2184.1985.tb00633.x. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES