Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Aug;106(Suppl 4):1047–1050. doi: 10.1289/ehp.98106s41047

Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population.

M R Karagas 1, T D Tosteson 1, J Blum 1, J S Morris 1, J A Baron 1, B Klaue 1
PMCID: PMC1533320  PMID: 9703491

Abstract

Ingestion of arsenic-contaminated drinking water is associated with an increased risk of several cancers, including skin and bladder malignancies; but it is not yet clear whether such adverse effects are present at levels to which the U.S. population is exposed. In New Hampshire, detectable levels of arsenic have been reported in drinking water supplies throughout the state. Therefore, we have begun a population-based epidemiologic case-control study in which residents of New Hampshire diagnosed with primary squamous cell (n = 900) and basal cell (n = 1200) skin cancers are being selected from a special statewide skin cancer incidence survey; patients diagnosed with primary bladder cancers (n = 450) are being identified through the New Hampshire State Cancer Registry. Exposure histories of these patients will be compared to a control group of individuals randomly selected from population lists (n = 1200). Along with a detailed personal interview, arsenic and other trace elements are being measured in toenail clipping samples using instrumental neutron activation analysis. Household water samples are being tested on selected participants using a hydride generation technique with high-resolution inductively coupled plasma mass spectrometry. In the first 793 households tested arsenic concentrations ranged from undetectable (0.01 microgram/l) to 180 microgram/l. Over 10% of the private wells contained levels above 10 microgram/l and 2.5% were above 50 microgram/l. Based on our projected sample size, we expect at least 80% power to detect a 2-fold risk of basal cell or squamous cell skin cancer or bladder cancer among individuals with the highest 5% toenail concentrations of arsenic.

Full text

PDF
1047

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong B. K., Kricker A. Skin cancer. Dermatol Clin. 1995 Jul;13(3):583–594. [PubMed] [Google Scholar]
  2. Bates M. N., Smith A. H., Cantor K. P. Case-control study of bladder cancer and arsenic in drinking water. Am J Epidemiol. 1995 Mar 15;141(6):523–530. doi: 10.1093/oxfordjournals.aje.a117467. [DOI] [PubMed] [Google Scholar]
  3. Berg J. W., Burbank F. Correlations between carcinogenic trace metals in water supplies and cancer mortality. Ann N Y Acad Sci. 1972 Jun 28;199:249–264. doi: 10.1111/j.1749-6632.1972.tb46460.x. [DOI] [PubMed] [Google Scholar]
  4. Brown K. G., Boyle K. E., Chen C. W., Gibb H. J. A dose-response analysis of skin cancer from inorganic arsenic in drinking water. Risk Anal. 1989 Dec;9(4):519–528. doi: 10.1111/j.1539-6924.1989.tb01263.x. [DOI] [PubMed] [Google Scholar]
  5. Brown L. M., Zahm S. H., Hoover R. N., Fraumeni J. F., Jr High bladder cancer mortality in rural New England (United States): an etiologic study. Cancer Causes Control. 1995 Jul;6(4):361–368. doi: 10.1007/BF00051412. [DOI] [PubMed] [Google Scholar]
  6. Chiou H. Y., Hsueh Y. M., Hsieh L. L., Hsu L. I., Hsu Y. H., Hsieh F. I., Wei M. L., Chen H. C., Yang H. T., Leu L. C. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res. 1997 Jun;386(3):197–207. doi: 10.1016/s1383-5742(97)00005-7. [DOI] [PubMed] [Google Scholar]
  7. Garland M., Morris J. S., Rosner B. A., Stampfer M. J., Spate V. L., Baskett C. J., Willett W. C., Hunter D. J. Toenail trace element levels as biomarkers: reproducibility over a 6-year period. Cancer Epidemiol Biomarkers Prev. 1993 Sep-Oct;2(5):493–497. [PubMed] [Google Scholar]
  8. Hsueh Y. M., Chiou H. Y., Huang Y. L., Wu W. L., Huang C. C., Yang M. H., Lue L. C., Chen G. S., Chen C. J. Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev. 1997 Aug;6(8):589–596. [PubMed] [Google Scholar]
  9. Karagas M. R., Morris J. S., Weiss J. E., Spate V., Baskett C., Greenberg E. R. Toenail samples as an indicator of drinking water arsenic exposure. Cancer Epidemiol Biomarkers Prev. 1996 Oct;5(10):849–852. [PubMed] [Google Scholar]
  10. Morton W., Starr G., Pohl D., Stoner J., Wagner S., Weswig D. Skin cancer and water arsenic in Lane County, Oregon. Cancer. 1976 May;37(5):2523–2532. doi: 10.1002/1097-0142(197605)37:5<2523::aid-cncr2820370545>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  11. Smith A. H., Hopenhayn-Rich C., Bates M. N., Goeden H. M., Hertz-Picciotto I., Duggan H. M., Wood R., Kosnett M. J., Smith M. T. Cancer risks from arsenic in drinking water. Environ Health Perspect. 1992 Jul;97:259–267. doi: 10.1289/ehp.9297259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tseng W. P., Chu H. M., How S. W., Fong J. M., Lin C. S., Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968 Mar;40(3):453–463. [PubMed] [Google Scholar]
  13. Yeh S., How S. W., Lin C. S. Arsenical cancer of skin. Histologic study with special reference to Bowen's disease. Cancer. 1968 Feb;21(2):312–339. doi: 10.1002/1097-0142(196802)21:2<312::aid-cncr2820210222>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES