Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Aug;106(Suppl 4):1005–1015. doi: 10.1289/ehp.98106s41005

Molecular basis for effects of carcinogenic heavy metals on inducible gene expression.

J W Hamilton 1, R C Kaltreider 1, O V Bajenova 1, M A Ihnat 1, J McCaffrey 1, B W Turpie 1, E E Rowell 1, J Oh 1, M J Nemeth 1, C A Pesce 1, J P Lariviere 1
PMCID: PMC1533345  PMID: 9703486

Abstract

Certain forms of the heavy metals arsenic and chromium are considered human carcinogens, although they are believed to act through very different mechanisms. Chromium(VI) is believed to act as a classic and mutagenic agent, and DNA/chromatin appears to be the principal target for its effects. In contrast, arsenic(III) is considered nongenotoxic, but is able to target specific cellular proteins, principally through sulfhydryl interactions. We had previously shown that various genotoxic chemical carcinogens, including chromium (VI), preferentially altered expression of several inducible genes but had little or no effect on constitutive gene expression. We were therefore interested in whether these carcinogenic heavy metals might target specific but distinct sites within cells, leading to alterations in gene expression that might contribute to the carcinogenic process. Arsenic(III) and chromium(VI) each significantly altered both basal and hormone-inducible expression of a model inducible gene, phosphoenolpyruvate carboxykinase (PEPCK), at nonovertly toxic doses in the chick embryo in vivo and rat hepatoma H411E cells in culture. We have recently developed two parallel cell culture approaches for examining the molecular basis for these effects. First, we are examining the effects of heavy metals on expression and activation of specific transcription factors known to be involved in regulation of susceptible inducible genes, and have recently observed significant but different effects of arsenic(III) and chromium(VI) on nuclear transcription factor binding. Second, we have developed cell lines with stably integrated PEPCK promoter-luciferase reporter gene constructs to examine effects of heavy metals on promoter function, and have also recently seen profound effects induced by both chromium(VI) and arsenic(III) in this system. These model systems should enable us to be able to identify the critical cis (DNA) and trans (protein) cellular targets of heavy metal exposure leading to alterations in expression of specific susceptible genes. It is anticipated that such information will provide valuable insight into the mechanistic basis for these effects as well as provide sensitive molecular biomarkers for evaluating human exposure.

Full text

PDF
1005

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcedo J. A., Misra M., Hamilton J. W., Wetterhahn K. E. The genotoxic carcinogen chromium(VI) alters the metal-inducible expression but not the basal expression of the metallothionein gene in vivo. Carcinogenesis. 1994 May;15(5):1089–1092. doi: 10.1093/carcin/15.5.1089. [DOI] [PubMed] [Google Scholar]
  2. Beale E. G., Chrapkiewicz N. B., Scoble H. A., Metz R. J., Quick D. P., Noble R. L., Donelson J. E., Biemann K., Granner D. K. Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem. 1985 Sep 5;260(19):10748–10760. [PubMed] [Google Scholar]
  3. Caron R. M., Hamilton J. W. Preferential effects of the chemotherapeutic DNA crosslinking agent mitomycin C on inducible gene expression in vivo. Environ Mol Mutagen. 1995;25(1):4–11. doi: 10.1002/em.2850250103. [DOI] [PubMed] [Google Scholar]
  4. Carrier F., Gatignol A., Hollander M. C., Jeang K. T., Fornace A. J., Jr Induction of RNA-binding proteins in mammalian cells by DNA-damaging agents. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1554–1558. doi: 10.1073/pnas.91.4.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang W. C., Chen S. H., Wu H. L., Shi G. Y., Murota S., Morita I. Cytoprotective effect of reduced glutathione in arsenical-induced endothelial cell injury. Toxicology. 1991;69(1):101–110. doi: 10.1016/0300-483x(91)90157-v. [DOI] [PubMed] [Google Scholar]
  6. Chin K. V., Pastan I., Gottesman M. M. Function and regulation of the human multidrug resistance gene. Adv Cancer Res. 1993;60:157–180. doi: 10.1016/s0065-230x(08)60825-8. [DOI] [PubMed] [Google Scholar]
  7. Cohen D., Piekarz R. L., Hsu S. I., DePinho R. A., Carrasco N., Horwitz S. B. Structural and functional analysis of the mouse mdr1b gene promoter. J Biol Chem. 1991 Feb 5;266(4):2239–2244. [PubMed] [Google Scholar]
  8. Cornwell M. M., Smith D. E. SP1 activates the MDR1 promoter through one of two distinct G-rich regions that modulate promoter activity. J Biol Chem. 1993 Sep 15;268(26):19505–19511. [PubMed] [Google Scholar]
  9. Curran T., Gordon M. B., Rubino K. L., Sambucetti L. C. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene. 1987;2(1):79–84. [PubMed] [Google Scholar]
  10. De Luca L. M. Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J. 1991 Nov;5(14):2924–2933. [PubMed] [Google Scholar]
  11. Denison M. S., Okey A. B., Hamilton J. W., Bloom S. E., Wilkinson C. F. Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin: ontogeny in chick embryo liver. J Biochem Toxicol. 1986 Sep;1(3):39–49. doi: 10.1002/jbt.2570010305. [DOI] [PubMed] [Google Scholar]
  12. Devary Y., Gottlieb R. A., Lau L. F., Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol. 1991 May;11(5):2804–2811. doi: 10.1128/mcb.11.5.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Farmer P. B., Bailey E., Campbell J. B. Use of alkylated proteins in the monitoring of exposure to alkylating agents. IARC Sci Publ. 1984;(59):189–198. [PubMed] [Google Scholar]
  15. Fornace A. J., Jr, Alamo I., Jr, Hollander M. C. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8800–8804. doi: 10.1073/pnas.85.23.8800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fornace A. J., Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989 Oct;9(10):4196–4203. doi: 10.1128/mcb.9.10.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gayda D. P., Pariza M. W. Effects of carcinogens on hormonal regulation of gene expression in primary cultures of adult rat hepatocytes. Carcinogenesis. 1983 Sep;4(9):1127–1131. doi: 10.1093/carcin/4.9.1127. [DOI] [PubMed] [Google Scholar]
  18. Granner D., O'Brien R., Imai E., Forest C., Mitchell J., Lucas P. Complex hormone response unit regulating transcription of the phosphoenolpyruvate carboxykinase gene: from metabolic pathways to molecular biology. Recent Prog Horm Res. 1991;47:319–348. doi: 10.1016/b978-0-12-571147-0.50014-7. [DOI] [PubMed] [Google Scholar]
  19. Hamilton J. W., Bement W. J., Sinclair P. R., Sinclair J. F., Alcedo J. A., Wetterhahn K. E. Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch Biochem Biophys. 1991 Sep;289(2):387–392. doi: 10.1016/0003-9861(91)90428-l. [DOI] [PubMed] [Google Scholar]
  20. Hamilton J. W., Bement W. J., Sinclair P. R., Sinclair J. F., Alcedo J. A., Wetterhahn K. E. Inhibition of protein synthesis increases the transcription of the phenobarbital-inducible CYP2H1 and CYP2H2 genes in chick embryo hepatocytes. Arch Biochem Biophys. 1992 Oct;298(1):96–104. doi: 10.1016/0003-9861(92)90099-i. [DOI] [PubMed] [Google Scholar]
  21. Hamilton J. W., Bement W. J., Sinclair P. R., Sinclair J. F., Wetterhahn K. E. Expression of 5-aminolaevulinate synthase and cytochrome P-450 mRNAs in chicken embryo hepatocytes in vivo and in culture. Effect of porphyrinogenic drugs and haem. Biochem J. 1988 Oct 1;255(1):267–275. [PMC free article] [PubMed] [Google Scholar]
  22. Hamilton J. W., Bloom S. E. Correlation between induction of xenobiotic metabolism and DNA damage from chemical carcinogens in the chick embryo in vivo. Carcinogenesis. 1986 Jul;7(7):1101–1106. doi: 10.1093/carcin/7.7.1101. [DOI] [PubMed] [Google Scholar]
  23. Hamilton J. W., Bloom S. E. Correlation between mixed-function oxidase enzyme induction and aflatoxin B1-induced unscheduled DNA synthesis in the chick embryo, in vivo. Environ Mutagen. 1984;6(1):41–48. doi: 10.1002/em.2860060106. [DOI] [PubMed] [Google Scholar]
  24. Hamilton J. W., Bloom S. E. Developmental differences in basal and induced aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity in chick embryo liver and lung in ovo. Biochem Pharmacol. 1983 Oct 1;32(19):2986–2988. doi: 10.1016/0006-2952(83)90409-4. [DOI] [PubMed] [Google Scholar]
  25. Hamilton J. W., Denison M. S., Bloom S. E. Development of basal and induced aryl hydrocarbon (benzo[a]pyrene) hydroxylase activity in the chicken embryo in ovo. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3372–3376. doi: 10.1073/pnas.80.11.3372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hamilton J. W., Louis C. A., Doherty K. A., Hunt S. R., Reed M. J., Treadwell M. D. Preferential alteration of inducible gene expression in vivo by carcinogens that induce bulky DNA lesions. Mol Carcinog. 1993;8(1):34–43. doi: 10.1002/mc.2940080109. [DOI] [PubMed] [Google Scholar]
  27. Hamilton J. W., McCaffrey J., Caron R. M., Louis C. A., Treadwell M. D., Hunt S. R., Reed M. J., Doherty K. A. Genotoxic chemical carcinogens target inducible genes in vivo. Ann N Y Acad Sci. 1994 Jul 29;726:343–345. doi: 10.1111/j.1749-6632.1994.tb52846.x. [DOI] [PubMed] [Google Scholar]
  28. Hamilton J. W., Wetterhahn K. E. Chromium (VI)-induced DNA damage in chick embryo liver and blood cells in vivo. Carcinogenesis. 1986 Dec;7(12):2085–2088. doi: 10.1093/carcin/7.12.2085. [DOI] [PubMed] [Google Scholar]
  29. Hamilton J. W., Wetterhahn K. E. Differential effects of chromium(VI) on constitutive and inducible gene expression in chick embryo liver in vivo and correlation with chromium(VI)-induced DNA damage. Mol Carcinog. 1989;2(5):274–286. doi: 10.1002/mc.2940020508. [DOI] [PubMed] [Google Scholar]
  30. Hanson R. W., Patel Y. M. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:203–281. doi: 10.1002/9780470123157.ch6. [DOI] [PubMed] [Google Scholar]
  31. Herrlich P., Sachsenmaier C., Radler-Pohl A., Gebel S., Blattner C., Rahmsdorf H. J. The mammalian UV response: mechanism of DNA damage induced gene expression. Adv Enzyme Regul. 1994;34:381–395. doi: 10.1016/0065-2571(94)90024-8. [DOI] [PubMed] [Google Scholar]
  32. Hollander M. C., Fornace A. J., Jr Induction of fos RNA by DNA-damaging agents. Cancer Res. 1989 Apr 1;49(7):1687–1692. [PubMed] [Google Scholar]
  33. Huang D. P., Maine A. B., Chiu J. F. Changes in hepatic levels of tyrosine aminotransferase messenger RNA during chemical hepatocarcinogenesis. Cancer Lett. 1984 Mar;22(2):143–149. doi: 10.1016/0304-3835(84)90111-3. [DOI] [PubMed] [Google Scholar]
  34. Ihnat M. A., Lariviere J. P., Warren A. J., La Ronde N., Blaxall J. R., Pierre K. M., Turpie B. W., Hamilton J. W. Suppression of P-glycoprotein expression and multidrug resistance by DNA cross-linking agents. Clin Cancer Res. 1997 Aug;3(8):1339–1346. [PubMed] [Google Scholar]
  35. Jackman J., Alamo I., Jr, Fornace A. J., Jr Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res. 1994 Nov 1;54(21):5656–5662. [PubMed] [Google Scholar]
  36. Janssen Y. M., Barchowsky A., Treadwell M., Driscoll K. E., Mossman B. T. Asbestos induces nuclear factor kappa B (NF-kappa B) DNA-binding activity and NF-kappa B-dependent gene expression in tracheal epithelial cells. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8458–8462. doi: 10.1073/pnas.92.18.8458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kuo M. L., Meng T. C., Lin J. K. Involvement of glutathione in induction of c-jun proto-oncogene by methylmethanesulfonate in NIH 3T3 cells. Carcinogenesis. 1996 Apr;17(4):815–820. doi: 10.1093/carcin/17.4.815. [DOI] [PubMed] [Google Scholar]
  38. Lamph W. W., Wamsley P., Sassone-Corsi P., Verma I. M. Induction of proto-oncogene JUN/AP-1 by serum and TPA. Nature. 1988 Aug 18;334(6183):629–631. doi: 10.1038/334629a0. [DOI] [PubMed] [Google Scholar]
  39. Lopez S., Miyashita Y., Simons S. S., Jr Structurally based, selective interaction of arsenite with steroid receptors. J Biol Chem. 1990 Sep 25;265(27):16039–16042. [PubMed] [Google Scholar]
  40. Lucas P. C., Granner D. K. Hormone response domains in gene transcription. Annu Rev Biochem. 1992;61:1131–1173. doi: 10.1146/annurev.bi.61.070192.005411. [DOI] [PubMed] [Google Scholar]
  41. Luethy J. D., Holbrook N. J. Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Res. 1992 Jan 1;52(1):5–10. [PubMed] [Google Scholar]
  42. Madden M. J., Morrow C. S., Nakagawa M., Goldsmith M. E., Fairchild C. R., Cowan K. H. Identification of 5' and 3' sequences involved in the regulation of transcription of the human mdr1 gene in vivo. J Biol Chem. 1993 Apr 15;268(11):8290–8297. [PubMed] [Google Scholar]
  43. McCaffrey J., Hamilton J. W. Comparison of effects of direct-acting DNA methylating and ethylating agents on inducible gene expression in vivo. Environ Mol Mutagen. 1994;23(3):164–170. doi: 10.1002/em.2850230303. [DOI] [PubMed] [Google Scholar]
  44. McCaffrey J., Hamilton J. W. Development regulation of basal and hormone-inducible phosphoenolpyruvate carboxykinase gene expression in chick embryo liver in vivo. Arch Biochem Biophys. 1994 Feb 15;309(1):10–17. doi: 10.1006/abbi.1994.1076. [DOI] [PubMed] [Google Scholar]
  45. McCaffrey J., Wolf C. M., Hamilton J. W. Effects of the genotoxic carcinogen chromium(VI) on basal and hormone-inducible phosphoenolpyruvate carboxykinase gene expression in vivo: correlation with glucocorticoid- and developmentally regulated expression. Mol Carcinog. 1994 Aug;10(4):189–198. doi: 10.1002/mc.2940100403. [DOI] [PubMed] [Google Scholar]
  46. Miller M. S., Wogan G. N. Inhibition of steroid-inducible tyrosine aminotransferase gene expression by N-methyl-N'-nitro-N-nitrosoguanidine in a rat hepatoma cell line. Carcinogenesis. 1986 Aug;7(8):1273–1278. doi: 10.1093/carcin/7.8.1273. [DOI] [PubMed] [Google Scholar]
  47. Papathanasiou M. A., Kerr N. C., Robbins J. H., McBride O. W., Alamo I., Jr, Barrett S. F., Hickson I. D., Fornace A. J., Jr Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol Cell Biol. 1991 Feb;11(2):1009–1016. doi: 10.1128/mcb.11.2.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Park J. S., Luethy J. D., Wang M. G., Fargnoli J., Fornace A. J., Jr, McBride O. W., Holbrook N. J. Isolation, characterization and chromosomal localization of the human GADD153 gene. Gene. 1992 Jul 15;116(2):259–267. doi: 10.1016/0378-1119(92)90523-r. [DOI] [PubMed] [Google Scholar]
  49. Read M. A., Whitley M. Z., Williams A. J., Collins T. NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation. J Exp Med. 1994 Feb 1;179(2):503–512. doi: 10.1084/jem.179.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sachsenmaier C., Radler-Pohl A., Müller A., Herrlich P., Rahmsdorf H. J. Damage to DNA by UV light and activation of transcription factors. Biochem Pharmacol. 1994 Jan 13;47(1):129–136. doi: 10.1016/0006-2952(94)90446-4. [DOI] [PubMed] [Google Scholar]
  51. Sanchez E. R. Heat shock induces translocation to the nucleus of the unliganded glucocorticoid receptor. J Biol Chem. 1992 Jan 5;267(1):17–20. [PubMed] [Google Scholar]
  52. Thompson D. J. A chemical hypothesis for arsenic methylation in mammals. Chem Biol Interact. 1993 Sep;88(2-3):89–14. doi: 10.1016/0009-2797(93)90086-e. [DOI] [PubMed] [Google Scholar]
  53. Wetterhahn K. E., Hamilton J. W., Aiyar J., Borges K. M., Floyd R. Mechanism of chromium(VI) carcinogenesis. Reactive intermediates and effect on gene expression. Biol Trace Elem Res. 1989 Jul-Sep;21:405–411. doi: 10.1007/BF02917282. [DOI] [PubMed] [Google Scholar]
  54. Wetterhahn K. E., Hamilton J. W. Molecular basis of hexavalent chromium carcinogenicity: effect on gene expression. Sci Total Environ. 1989 Oct 1;86(1-2):113–129. doi: 10.1016/0048-9697(89)90199-x. [DOI] [PubMed] [Google Scholar]
  55. Wogan G. N., Friedman M. A. Inhibition by aflatonin B-1 of hydrocortisone induction of rat liver tryptophan pyrrolase and tyrosine transaminase. Arch Biochem Biophys. 1968 Nov;128(2):509–516. doi: 10.1016/0003-9861(68)90058-1. [DOI] [PubMed] [Google Scholar]
  56. Yeoh G. C., Toia R. F., Godfrey M. L., Adler B. The development of mixed function amine oxidase in cultured foetal rat hepatocytes and its relation to 3'-methyl-4-N,N-dimethylaminoazobenzene effects on tyrosine aminotransferase accumulation. Carcinogenesis. 1983 Nov;4(11):1499–1501. doi: 10.1093/carcin/4.11.1499. [DOI] [PubMed] [Google Scholar]
  57. Yu L., Cohen D., Piekarz R. L., Horwitz S. B. Three distinct nuclear protein binding sites in the promoter of the murine multidrug resistance mdr1b gene. J Biol Chem. 1993 Apr 5;268(10):7520–7526. [PubMed] [Google Scholar]
  58. Yáez L., Carrizales L., Zanatta M. T., Mejía J. J., Batres L., Díaz-Barriga F. Arsenic-cadmium interaction in rats: toxic effects in the heart and tissue metal shifts. Toxicology. 1991 Apr 8;67(2):227–234. doi: 10.1016/0300-483x(91)90145-q. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES