Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Apr;106(Suppl 2):559–569. doi: 10.1289/ehp.98106559

Nephrotoxicity testing in vitro--what we know and what we need to know.

W Pfaller 1, G Gstraunthaler 1
PMCID: PMC1533421  PMID: 9599703

Abstract

The kidney is affected by many chemicals. Some of the chemicals may even contribute to end-stage renal disease and thus contribute considerably to health care costs. Because of the large functional reserve of the kidney, which masks signs of dysfunction, early diagnosis of renal disease is often difficult. Although numerous studies aimed at understanding the mechanisms underlying chemicals and drugs that target various renal cell types have delivered enough understanding for a reasonable risk assessment, there is still an urgent need to better understand the mechanisms leading to renal cell injury and organ dysfunction. The increasing use of in vitro techniques using isolated renal cells, nephron fragments, or cell cultures derived from specific renal cell types has improved our insight into the molecular mechanisms involved in nephrotoxicity. A short overview is given on the various in vitro systems currently used to clarify mechanistic aspects leading to sublethal or lethal injury of the functionally most important nephron epithelial cells derived from various species. Whereas freshly isolated cells and nephron fragments appear to represent a sufficient basis to study acute effects (hours) of nephrotoxins, e.g., on cell metabolism, primary cultures of these cells are more appropriate to study long-term effects. In contrast to isolated cells and fragments, however, primary cultures tend to first lose several of their in vivo metabolic properties during culture, and second to have only a limited life span (days to weeks). Moreover, establishing such primary cultures is a time-consuming and laborious procedure. For that reason many studies have been carried out on renal cell lines, which are easy to cultivate in large quantities and which have an unlimited life span. Unfortunately, none of the lines display a state of differentiation comparable to that of freshly isolated cells or their primary cultures. Most often they lack expression of key functions (e.g., gluconeogenesis or organic anion transport) of their in vivo correspondents. Therefore, the use of cell lines for assessment of nephrotoxic mechanisms will be limited to those functions the lines express. Upcoming molecular biology approaches such as the transduction of immortalizing genes into primary cultures and the utilization of cells from transgenic animals may in the near future result in the availability of highly differentiated renal cells with markedly extended life spans and near in vivo characteristics that may facilitate the use of renal cell culture for routine screening of nephrotoxins.

Full text

PDF
559

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aleo M. D., Taub M. L., Nickerson P. A., Kostyniak P. J. Primary cultures of rabbit renal proximal tubule cells: I. Growth and biochemical characteristics. In Vitro Cell Dev Biol. 1989 Sep;25(9):776–783. doi: 10.1007/BF02623660. [DOI] [PubMed] [Google Scholar]
  2. Allen M. L., Nakao A., Sonnenburg W. K., Burnatowska-Hledin M., Spielman W. S., Smith W. L. Immunodissection of cortical and medullary thick ascending limb cells from rabbit kidney. Am J Physiol. 1988 Oct;255(4 Pt 2):F704–F710. doi: 10.1152/ajprenal.1988.255.4.F704. [DOI] [PubMed] [Google Scholar]
  3. Anders M. W. Metabolism of drugs by the kidney. Kidney Int. 1980 Nov;18(5):636–647. doi: 10.1038/ki.1980.181. [DOI] [PubMed] [Google Scholar]
  4. Balaban R. S. The application of nuclear magnetic resonance to the study of cellular physiology. Am J Physiol. 1984 Jan;246(1 Pt 1):C10–C19. doi: 10.1152/ajpcell.1984.246.1.C10. [DOI] [PubMed] [Google Scholar]
  5. Barnes D., Sato G. Serum-free cell culture: a unifying approach. Cell. 1980 Dec;22(3):649–655. doi: 10.1016/0092-8674(80)90540-1. [DOI] [PubMed] [Google Scholar]
  6. Blais A., Morvan-Baleynaud J., Friedlander G., Le Grimellec C. Primary culture of rabbit proximal tubules as a cellular model to study nephrotoxicity of xenobiotics. Kidney Int. 1993 Jul;44(1):13–18. doi: 10.1038/ki.1993.206. [DOI] [PubMed] [Google Scholar]
  7. Boogaard P. J., Commandeur J. N., Mulder G. J., Vermeulen N. P., Nagelkerke J. F. Toxicity of the cysteine-S-conjugates and mercapturic acids of four structurally related difluoroethylenes in isolated proximal tubular cells from rat kidney. Uptake of the conjugates and activation to toxic metabolites. Biochem Pharmacol. 1989 Nov 1;38(21):3731–3741. doi: 10.1016/0006-2952(89)90579-0. [DOI] [PubMed] [Google Scholar]
  8. Boogaard P. J., Nagelkerke J. F., Mulder G. J. Renal proximal tubular cells in suspension or in primary culture as in vitro models to study nephrotoxicity. Chem Biol Interact. 1990;76(3):251–291. doi: 10.1016/0009-2797(90)90096-6. [DOI] [PubMed] [Google Scholar]
  9. Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
  10. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  11. Cartier N., Lacave R., Vallet V., Hagege J., Hellio R., Robine S., Pringault E., Cluzeaud F., Briand P., Kahn A. Establishment of renal proximal tubule cell lines by targeted oncogenesis in transgenic mice using the L-pyruvate kinase-SV40 (T) antigen hybrid gene. J Cell Sci. 1993 Mar;104(Pt 3):695–704. doi: 10.1242/jcs.104.3.695. [DOI] [PubMed] [Google Scholar]
  12. Chen Q., Yu K., Holbrook N. J., Stevens J. L. Activation of the growth arrest and DNA damage-inducible gene gadd 153 by nephrotoxic cysteine conjugates and dithiothreitol. J Biol Chem. 1992 Apr 25;267(12):8207–8212. [PubMed] [Google Scholar]
  13. Chen T. C., Curthoys N. P., Lagenaur C. F., Puschett J. B. Characterization of primary cell cultures derived from rat renal proximal tubules. In Vitro Cell Dev Biol. 1989 Aug;25(8):714–722. doi: 10.1007/BF02623724. [DOI] [PubMed] [Google Scholar]
  14. Counts R. S., Nowak G., Wyatt R. D., Schnellmann R. G. Nephrotoxicant inhibition of renal proximal tubule cell regeneration. Am J Physiol. 1995 Aug;269(2 Pt 2):F274–F281. doi: 10.1152/ajprenal.1995.269.2.F274. [DOI] [PubMed] [Google Scholar]
  15. Courjault-Gautier F., Chevalier J., Abbou C. C., Chopin D. K., Toutain H. J. Consecutive use of hormonally defined serum-free media to establish highly differentiated human renal proximal tubule cells in primary culture. J Am Soc Nephrol. 1995 May;5(11):1949–1963. doi: 10.1681/ASN.V5111949. [DOI] [PubMed] [Google Scholar]
  16. Fouda A. K., Fauth C., Roch-Ramel F. Transport of organic cations by kidney epithelial cell line LLC-PK1. J Pharmacol Exp Ther. 1990 Jan;252(1):286–292. [PubMed] [Google Scholar]
  17. Friedlander G., Le Grimellec C., Amiel C. Increase in membrane fluidity modulates sodium-coupled uptakes and cyclic AMP synthesis by renal proximal tubular cells in primary culture. Biochim Biophys Acta. 1990 Feb 16;1022(1):1–7. doi: 10.1016/0005-2736(90)90393-3. [DOI] [PubMed] [Google Scholar]
  18. Gargus J. J. Mutant isolation and gene transfer as tools in study of transport proteins. Am J Physiol. 1987 May;252(5 Pt 1):C457–C467. doi: 10.1152/ajpcell.1987.252.5.C457. [DOI] [PubMed] [Google Scholar]
  19. Genestie I., Morin J. P., Vannier B., Lorenzon G. Polarity and transport properties of rabbit kidney proximal tubule cells on collagen IV-coated porous membranes. Am J Physiol. 1995 Jul;269(1 Pt 2):F22–F30. doi: 10.1152/ajprenal.1995.269.1.F22. [DOI] [PubMed] [Google Scholar]
  20. Gilbert S. F., Migeon B. R. Renal enzymes in kidney cells selected by D-valine medium. J Cell Physiol. 1977 Aug;92(2):161–167. doi: 10.1002/jcp.1040920204. [DOI] [PubMed] [Google Scholar]
  21. Golenhofen N., Heuner A., Mildenberger S., Schwegler J. S., Silbernagl S. Mercapturic acid formation in cultured opossum kidney cells. Toxicol Lett. 1990 Sep;53(1-2):261–261. doi: 10.1016/0378-4274(90)90143-a. [DOI] [PubMed] [Google Scholar]
  22. Goligorsky M. S., Osborne D., Howard T., Hruska K. A., Karl I. E. Hormonal regulation of gluconeogenesis in cultured proximal tubular cells: role of cytosolic calcium. Am J Physiol. 1987 Nov;253(5 Pt 2):F802–F809. doi: 10.1152/ajprenal.1987.253.5.F802. [DOI] [PubMed] [Google Scholar]
  23. Grenier F. C. Characteristics of renal collecting tubule cells in primary culture. Miner Electrolyte Metab. 1986;12(1):58–63. [PubMed] [Google Scholar]
  24. Gstraunthaler G. J. Epithelial cells in tissue culture. Ren Physiol Biochem. 1988 Jan-Feb;11(1-2):1–42. doi: 10.1159/000173147. [DOI] [PubMed] [Google Scholar]
  25. Gstraunthaler G., Gersdorf E., Fischer W. M., Joannidis M., Pfaller W. Morphological and biochemical changes of LLC-PK1 cells during adaptation to glucose-free culture conditions. Ren Physiol Biochem. 1990 May-Jun;13(3):137–153. doi: 10.1159/000173360. [DOI] [PubMed] [Google Scholar]
  26. Guder W. G., Ross B. D. Enzyme distribution along the nephron. Kidney Int. 1984 Aug;26(2):101–111. doi: 10.1038/ki.1984.143. [DOI] [PubMed] [Google Scholar]
  27. Guder W. G., Wagner S., Wirthensohn G. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int. 1986 Jan;29(1):41–45. doi: 10.1038/ki.1986.6. [DOI] [PubMed] [Google Scholar]
  28. Handler J. S., Green N., Steele R. E. Cultures as epithelial models: porous-bottom culture dishes for studying transport and differentiation. Methods Enzymol. 1989;171:736–744. doi: 10.1016/s0076-6879(89)71040-5. [DOI] [PubMed] [Google Scholar]
  29. Handler J. S., Moran A. Regulation of expression of the sodium-coupled hexose transporter in cultured LLC-PK1 epithelia. Pflugers Arch. 1985;405 (Suppl 1):S163–S166. doi: 10.1007/BF00581800. [DOI] [PubMed] [Google Scholar]
  30. Handler J. S. Overview of epithelial polarity. Annu Rev Physiol. 1989;51:729–740. doi: 10.1146/annurev.ph.51.030189.003501. [DOI] [PubMed] [Google Scholar]
  31. Handler J. S., Preston A. S., Steele R. E. Factors affecting the differentiation of epithelial transport and responsiveness to hormones. Fed Proc. 1984 May 15;43(8):2221–2224. [PubMed] [Google Scholar]
  32. Hatzinger P. B., Stevens J. L. Rat kidney proximal tubule cells in defined medium: the roles of cholera toxin, extracellular calcium and serum in cell growth and expression of gamma-glutamyltransferase. In Vitro Cell Dev Biol. 1989 Feb;25(2):205–212. doi: 10.1007/BF02626180. [DOI] [PubMed] [Google Scholar]
  33. Helbert M. J., Dauwe S. E., Van der Biest I., Nouwen E. J., De Broe M. E. Immunodissection of the human proximal nephron: flow sorting of S1S2S3, S1S2 and S3 proximal tubular cells. Kidney Int. 1997 Aug;52(2):414–428. doi: 10.1038/ki.1997.348. [DOI] [PubMed] [Google Scholar]
  34. Holohan P. D., Sokol P. P., Ross C. R., Coulson R., Trimble M. E., Laska D. A., Williams P. D. Gentamicin-induced increases in cytosolic calcium in pig kidney cells (LLC-PK1). J Pharmacol Exp Ther. 1988 Oct;247(1):349–354. [PubMed] [Google Scholar]
  35. Hopfer U., Jacobberger J. W., Gruenert D. C., Eckert R. L., Jat P. S., Whitsett J. A. Immortalization of epithelial cells. Am J Physiol. 1996 Jan;270(1 Pt 1):C1–11. doi: 10.1152/ajpcell.1996.270.1.C1. [DOI] [PubMed] [Google Scholar]
  36. Horio M., Pastan I., Gottesman M. M., Handler J. S. Transepithelial transport of vinblastine by kidney-derived cell lines. Application of a new kinetic model to estimate in situ Km of the pump. Biochim Biophys Acta. 1990 Aug 24;1027(2):116–122. doi: 10.1016/0005-2736(90)90074-x. [DOI] [PubMed] [Google Scholar]
  37. Horster M. F., Sone M. Primary culture of isolated tubule cells of defined segmental origin. Methods Enzymol. 1990;191:409–426. doi: 10.1016/0076-6879(90)91026-3. [DOI] [PubMed] [Google Scholar]
  38. Jones D. P. Renal metabolism during normoxia, hypoxia, and ischemic injury. Annu Rev Physiol. 1986;48:33–50. doi: 10.1146/annurev.ph.48.030186.000341. [DOI] [PubMed] [Google Scholar]
  39. Kays S. E., Schnellmann R. G. Regeneration of renal proximal tubule cells in primary culture following toxicant injury: response to growth factors. Toxicol Appl Pharmacol. 1995 Jun;132(2):273–280. doi: 10.1006/taap.1995.1108. [DOI] [PubMed] [Google Scholar]
  40. Kersting U., Joha H., Steigner W., Gassner B., Gstraunthaler G., Pfaller W., Oberleithner H. Fusion of cultured dog kidney (MDCK) cells: I. Technique, fate of plasma membranes and of cell nuclei. J Membr Biol. 1989 Oct;111(1):37–48. doi: 10.1007/BF01869207. [DOI] [PubMed] [Google Scholar]
  41. Kleinman H. K., Luckenbill-Edds L., Cannon F. W., Sephel G. C. Use of extracellular matrix components for cell culture. Anal Biochem. 1987 Oct;166(1):1–13. doi: 10.1016/0003-2697(87)90538-0. [DOI] [PubMed] [Google Scholar]
  42. Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kreisberg J. I., Hassid A. Functional properties of glomerular cells in culture. Miner Electrolyte Metab. 1986;12(1):25–31. [PubMed] [Google Scholar]
  44. Kriz W., Bankir L. A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Kidney Int. 1988 Jan;33(1):1–7. doi: 10.1038/ki.1988.1. [DOI] [PubMed] [Google Scholar]
  45. Kruidering M., Maasdam D. H., Prins F. A., de Heer E., Mulder G. J., Nagelkerke J. F. Evaluation of nephrotoxicity in vitro using a suspension of highly purified porcine proximal tubular cells and characterization of the cells in primary culture. Exp Nephrol. 1994 Nov-Dec;2(6):324–344. [PubMed] [Google Scholar]
  46. Lieberman D. M., Reithmeier R. A., Ling V., Charuk J. H., Goldberg H., Skorecki K. L. Identification of P-glycoprotein in renal brush border membranes. Biochem Biophys Res Commun. 1989 Jul 14;162(1):244–252. doi: 10.1016/0006-291x(89)91988-8. [DOI] [PubMed] [Google Scholar]
  47. Liu H., Lightfoot R., Stevens J. L. Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem. 1996 Mar 1;271(9):4805–4812. [PubMed] [Google Scholar]
  48. MacFarlane M., Foster J. R., Gibson G. G., King L. J., Lock E. A. Cysteine conjugate beta-lyase of rat kidney cytosol: characterization, immunocytochemical localization, and correlation with hexachlorobutadiene nephrotoxicity. Toxicol Appl Pharmacol. 1989 Apr;98(2):185–197. doi: 10.1016/0041-008x(89)90224-x. [DOI] [PubMed] [Google Scholar]
  49. Meezan E., Brendel K., Ulreich J., Carlson E. C. Properties of a pure metabolically active glomerular preparation from rat kidneys. I. Isolation. J Pharmacol Exp Ther. 1973 Nov;187(2):332–341. [PubMed] [Google Scholar]
  50. Merot J., Bidet M., Le Maout S., Tauc M., Poujeol P. Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture. Biochim Biophys Acta. 1989 Jan 16;978(1):134–144. doi: 10.1016/0005-2736(89)90508-7. [DOI] [PubMed] [Google Scholar]
  51. Minuth W. W., Stöckl G., Kloth S., Dermietzel R. Construction of an apparatus for perfusion cell cultures which enables in vitro experiments under organotypic conditions. Eur J Cell Biol. 1992 Feb;57(1):132–137. [PubMed] [Google Scholar]
  52. Monks T. J., Anders M. W., Dekant W., Stevens J. L., Lau S. S., van Bladeren P. J. Glutathione conjugate mediated toxicities. Toxicol Appl Pharmacol. 1990 Oct;106(1):1–19. doi: 10.1016/0041-008x(90)90100-9. [DOI] [PubMed] [Google Scholar]
  53. Morel F., Doucet A. Hormonal control of kidney functions at the cell level. Physiol Rev. 1986 Apr;66(2):377–468. doi: 10.1152/physrev.1986.66.2.377. [DOI] [PubMed] [Google Scholar]
  54. Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
  55. Mullin J. M., McGinn M. T. Effects of diacylglycerols on LLC-PK1 renal epithelia: similarity to phorbol ester tumor promoters. J Cell Physiol. 1988 Mar;134(3):357–366. doi: 10.1002/jcp.1041340306. [DOI] [PubMed] [Google Scholar]
  56. Ormstad K., Orrenius S., Jones D. P. Preparation and characteristics of isolated kidney cells. Methods Enzymol. 1981;77:137–146. doi: 10.1016/s0076-6879(81)77018-6. [DOI] [PubMed] [Google Scholar]
  57. Orrenius S., McConkey D. J., Bellomo G., Nicotera P. Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci. 1989 Jul;10(7):281–285. doi: 10.1016/0165-6147(89)90029-1. [DOI] [PubMed] [Google Scholar]
  58. Pastan I., Gottesman M. M. Multidrug resistance. Annu Rev Med. 1991;42:277–286. doi: 10.1146/annurev.me.42.020191.001425. [DOI] [PubMed] [Google Scholar]
  59. Pfaller W. Structure function correlation on rat kidney. Quantitative correlation of structure and function in the normal and injured rat kidney. Adv Anat Embryol Cell Biol. 1982;70:1–106. [PubMed] [Google Scholar]
  60. Pfaller W., Thorwartl U., Nevinny-Stickel M., Krall M., Schober M., Joannidis M., Hobisch A. Clinical value of fructose 1,6 bisphosphatase in monitoring renal proximal tubular injury. Kidney Int Suppl. 1994 Nov;47:S68–S75. [PubMed] [Google Scholar]
  61. Phelps J. S., Gandolfi A. J., Brendel K., Dorr R. T. Cisplatin nephrotoxicity: in vitro studies with precision-cut rabbit renal cortical slices. Toxicol Appl Pharmacol. 1987 Sep 30;90(3):501–512. doi: 10.1016/0041-008x(87)90142-6. [DOI] [PubMed] [Google Scholar]
  62. Powell D. W. Barrier function of epithelia. Am J Physiol. 1981 Oct;241(4):G275–G288. doi: 10.1152/ajpgi.1981.241.4.G275. [DOI] [PubMed] [Google Scholar]
  63. Prozialeck W. C., Niewenhuis R. J. Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol Appl Pharmacol. 1991 Jan;107(1):81–97. doi: 10.1016/0041-008x(91)90333-a. [DOI] [PubMed] [Google Scholar]
  64. Rabito C. A. Occluding junctions in a renal cell line (LLC-PK1) with characteristics of proximal tubular cells. Am J Physiol. 1986 Apr;250(4 Pt 2):F734–F743. doi: 10.1152/ajprenal.1986.250.4.F734. [DOI] [PubMed] [Google Scholar]
  65. Rabito C. A., Tchao R., Valentich J., Leighton J. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney. J Membr Biol. 1978 Nov 8;43(4):351–365. doi: 10.1007/BF01871696. [DOI] [PubMed] [Google Scholar]
  66. Racusen L. C., Monteil C., Sgrignoli A., Lucskay M., Marouillat S., Rhim J. G., Morin J. P. Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med. 1997 Mar;129(3):318–329. doi: 10.1016/s0022-2143(97)90180-3. [DOI] [PubMed] [Google Scholar]
  67. Rhim J. S., Jay G., Arnstein P., Price F. M., Sanford K. K., Aaronson S. A. Neoplastic transformation of human epidermal keratinocytes by AD12-SV40 and Kirsten sarcoma viruses. Science. 1985 Mar 8;227(4691):1250–1252. doi: 10.1126/science.2579430. [DOI] [PubMed] [Google Scholar]
  68. Romero M. F., Douglas J. G., Eckert R. L., Hopfer U., Jacobberger J. W. Development and characterization of rabbit proximal tubular epithelial cell lines. Kidney Int. 1992 Nov;42(5):1130–1144. doi: 10.1038/ki.1992.397. [DOI] [PubMed] [Google Scholar]
  69. Ronco P., Geniteau M., Poujeol P., Melcion C., Verroust P., Vandewalle A. Characterization of monoclonal antibodies to rabbit renal cortical cells. Am J Physiol. 1986 Mar;250(3 Pt 1):C506–C516. doi: 10.1152/ajpcell.1986.250.3.C506. [DOI] [PubMed] [Google Scholar]
  70. Ruedl C., Gstraunthaler G., Moser M. Differential inhibitory action of the fungal toxin orellanine on alkaline phosphatase isoenzymes. Biochim Biophys Acta. 1989 May 31;991(2):280–283. doi: 10.1016/0304-4165(89)90117-7. [DOI] [PubMed] [Google Scholar]
  71. Ruegg C. E., Gandolfi A. J., Nagle R. B., Brendel K. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions. Toxicol Appl Pharmacol. 1987 Sep 15;90(2):261–273. doi: 10.1016/0041-008x(87)90334-6. [DOI] [PubMed] [Google Scholar]
  72. Ryan M. J., Johnson G., Kirk J., Fuerstenberg S. M., Zager R. A., Torok-Storb B. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994 Jan;45(1):48–57. doi: 10.1038/ki.1994.6. [DOI] [PubMed] [Google Scholar]
  73. Schurek H. J., Alt J. M. Effect of albumin on the function of perfused rat kidney. Am J Physiol. 1981 Jun;240(6):F569–F576. doi: 10.1152/ajprenal.1981.240.6.F569. [DOI] [PubMed] [Google Scholar]
  74. Schurek H. J., Kriz W. Morphologic and functional evidence for oxygen deficiency in the isolated perfused rat kidney. Lab Invest. 1985 Aug;53(2):145–155. [PubMed] [Google Scholar]
  75. Scott J. A., Fischman A. J., Khaw B. A., Homcy C. J., Rabito C. A. Free radical-mediated membrane depolarization in renal and cardiac cells. Biochim Biophys Acta. 1987 May 12;899(1):76–82. doi: 10.1016/0005-2736(87)90241-0. [DOI] [PubMed] [Google Scholar]
  76. Scott J. A., Khaw B. A., Homcy C. J., Rabito C. A. Oxygen radicals alter the cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells. Biochim Biophys Acta. 1987 Feb 12;897(1):25–32. doi: 10.1016/0005-2736(87)90311-7. [DOI] [PubMed] [Google Scholar]
  77. Shasby D. M., Winter M., Shasby S. S. Oxidants and conductance of cultured epithelial cell monolayers: inositol phospholipid hydrolysis. Am J Physiol. 1988 Dec;255(6 Pt 1):C781–C788. doi: 10.1152/ajpcell.1988.255.6.C781. [DOI] [PubMed] [Google Scholar]
  78. Shimokama T., Watanabe T. Monoclonal antibodies to rat renal tissue: an approach to the immunohistological analysis of the nephron-collecting duct system, and ultra-structural localization of antigens. Histochem J. 1991 Jan;23(1):13–21. doi: 10.1007/BF01886503. [DOI] [PubMed] [Google Scholar]
  79. Sikka P. K., McMartin K. E. Normal rat kidney proximal tubule cells in primary and multiple subcultures. In Vitro Cell Dev Biol Anim. 1996 May;32(5):285–291. doi: 10.1007/BF02723061. [DOI] [PubMed] [Google Scholar]
  80. Simmons N. L. Tissue culture of established renal cell lines. Methods Enzymol. 1990;191:426–436. doi: 10.1016/0076-6879(90)91027-4. [DOI] [PubMed] [Google Scholar]
  81. Smith W. L., Garcia-Perez A. Immunodissection: use of monoclonal antibodies to isolate specific types of renal cells. Am J Physiol. 1985 Jan;248(1 Pt 2):F1–F7. doi: 10.1152/ajprenal.1985.248.1.F1. [DOI] [PubMed] [Google Scholar]
  82. Soltoff S. P. ATP and the regulation of renal cell function. Annu Rev Physiol. 1986;48:9–31. doi: 10.1146/annurev.ph.48.030186.000301. [DOI] [PubMed] [Google Scholar]
  83. Steele R. E., Preston A. S., Johnson J. P., Handler J. S. Porous-bottom dishes for culture of polarized cells. Am J Physiol. 1986 Jul;251(1 Pt 1):C136–C139. doi: 10.1152/ajpcell.1986.251.1.C136. [DOI] [PubMed] [Google Scholar]
  84. Steinmassl D., Pfaller W., Gstraunthaler G., Hoffmann W. LLC-PK1 epithelia as a model for in vitro assessment of proximal tubular nephrotoxicity. In Vitro Cell Dev Biol Anim. 1995 Feb;31(2):94–106. doi: 10.1007/BF02633969. [DOI] [PubMed] [Google Scholar]
  85. Stevens J., Hayden P., Taylor G. The role of glutathione conjugate metabolism and cysteine conjugate beta-lyase in the mechanism of S-cysteine conjugate toxicity in LLC-PK1 cells. J Biol Chem. 1986 Mar 5;261(7):3325–3332. [PubMed] [Google Scholar]
  86. Taub M. Retinoic acid modulates dome formation by MDCK cells in defined medium. J Cell Physiol. 1989 Oct;141(1):24–32. doi: 10.1002/jcp.1041410105. [DOI] [PubMed] [Google Scholar]
  87. Taub M., Sato G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J Cell Physiol. 1980 Nov;105(2):369–378. doi: 10.1002/jcp.1041050220. [DOI] [PubMed] [Google Scholar]
  88. Taub M., Sato G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J Cell Physiol. 1980 Nov;105(2):369–378. doi: 10.1002/jcp.1041050220. [DOI] [PubMed] [Google Scholar]
  89. Van Adelsberg J., Edwards J. C., Herzlinger D., Cannon C., Rater M., al-Awqati Q. Isolation and culture of HCO3- -secreting intercalated cells. Am J Physiol. 1989 May;256(5 Pt 1):C1004–C1011. doi: 10.1152/ajpcell.1989.256.5.C1004. [DOI] [PubMed] [Google Scholar]
  90. Vandewalle A., Lelongt B., Geniteau-Legendre M., Baudouin B., Antoine M., Estrade S., Chatelet F., Verroust P., Cassingena R., Ronco P. Maintenance of proximal and distal cell functions in SV40-transformed tubular cell lines derived from rabbit kidney cortex. J Cell Physiol. 1989 Oct;141(1):203–221. doi: 10.1002/jcp.1041410128. [DOI] [PubMed] [Google Scholar]
  91. Vinay P., Gougoux A., Lemieux G. Isolation of a pure suspension of rat proximal tubules. Am J Physiol. 1981 Oct;241(4):F403–F411. doi: 10.1152/ajprenal.1981.241.4.F403. [DOI] [PubMed] [Google Scholar]
  92. Wallin A., Zhang G., Jones T. W., Jaken S., Stevens J. L. Mechanism of the nephrogenic repair response. Studies on proliferation and vimentin expression after 35S-1,2-dichlorovinyl-L-cysteine nephrotoxicity in vivo and in cultured proximal tubule epithelial cells. Lab Invest. 1992 Apr;66(4):474–484. [PubMed] [Google Scholar]
  93. Willinger C. C., Thamaree S., Schramek H., Gstraunthaler G., Pfaller W. In vitro nephrotoxicity of Russell's viper venom. Kidney Int. 1995 Feb;47(2):518–528. doi: 10.1038/ki.1995.65. [DOI] [PubMed] [Google Scholar]
  94. Wilson P. D., Anderson R. J., Breckon R. D., Nathrath W., Schrier R. W. Retention of differentiated characteristics by cultures of defined rabbit kidney epithelia. J Cell Physiol. 1987 Feb;130(2):245–254. doi: 10.1002/jcp.1041300210. [DOI] [PubMed] [Google Scholar]
  95. Wilson P. D., Dillingham M. A., Breckon R., Anderson R. J. Defined human renal tubular epithelia in culture: growth, characterization, and hormonal response. Am J Physiol. 1985 Mar;248(3 Pt 2):F436–F443. doi: 10.1152/ajprenal.1985.248.3.F436. [DOI] [PubMed] [Google Scholar]
  96. Wilson P. D., Schrier R. W. Nephron segment and calcium as determinants of anoxic cell death in renal cultures. Kidney Int. 1986 Jun;29(6):1172–1179. doi: 10.1038/ki.1986.124. [DOI] [PubMed] [Google Scholar]
  97. Winkel C., Jans A. W. A 13C-NMR study on metabolic changes in proximal convoluted tubule cells induced by cadmium. Toxicol Lett. 1990 Sep;53(1-2):173–174. doi: 10.1016/0378-4274(90)90118-6. [DOI] [PubMed] [Google Scholar]
  98. Wirthensohn G., Guder W. G. Renal substrate metabolism. Physiol Rev. 1986 Apr;66(2):469–497. doi: 10.1152/physrev.1986.66.2.469. [DOI] [PubMed] [Google Scholar]
  99. Wittner M., Weidtke C., Schlatter E., di Stefano A., Greger R. Substrate utilization in the isolated perfused cortical thick ascending limb of rabbit nephron. Pflugers Arch. 1984 Sep;402(1):52–62. doi: 10.1007/BF00584832. [DOI] [PubMed] [Google Scholar]
  100. Woost P. G., Orosz D. E., Jin W., Frisa P. S., Jacobberger J. W., Douglas J. G., Hopfer U. Immortalization and characterization of proximal tubule cells derived from kidneys of spontaneously hypertensive and normotensive rats. Kidney Int. 1996 Jul;50(1):125–134. doi: 10.1038/ki.1996.295. [DOI] [PubMed] [Google Scholar]
  101. Yu K., Chen Q., Liu H., Zhan Y., Stevens J. L. Signalling the molecular stress response to nephrotoxic and mutagenic cysteine conjugates: differential roles for protein synthesis and calcium in the induction of c-fos and c-myc mRNA in LLC-PK1 cells. J Cell Physiol. 1994 Nov;161(2):303–311. doi: 10.1002/jcp.1041610215. [DOI] [PubMed] [Google Scholar]
  102. Zhang G., Ichimura T., Maier J. A., Maciag T., Stevens J. L. A role for fibroblast growth factor type-1 in nephrogenic repair. Autocrine expression in rat kidney proximal tubule epithelial cells in vitro and in the regenerating epithelium following nephrotoxic damage by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine in vivo. J Biol Chem. 1993 Jun 5;268(16):11542–11547. [PubMed] [Google Scholar]
  103. van de Water B., Zoeteweij J. P., de Bont H. J., Mulder G. J., Nagelkerke J. F. Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential. Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine. J Biol Chem. 1994 May 20;269(20):14546–14552. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES