Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Dec;106(Suppl 6):1485–1493. doi: 10.1289/ehp.98106s61485

Predicting blood lead concentrations from lead in environmental media.

K R Mahaffey 1
PMCID: PMC1533427  PMID: 9860907

Abstract

Policy statements providing health and environmental criteria for blood lead (PbB) often give recommendations on an acceptable distribution of PbB concentrations. Such statements may recommend distributions of PbB concentrations including an upper range (e.g., maximum and/or 90th percentile values) and central tendency (e.g., mean and/or 50th percentile) of the PbB distribution. Two major, and fundamentally dissimilar, methods to predict the distribution of PbB are currently in use: statistical analyses of epidemiologic data, and application of biokinetic models to environmental lead measurements to predict PbB. Although biokinetic models may include a parameter to predict contribution of lead from bone (PbBone), contemporary data based on chemical analyses of pediatric bone samples are rare. Dramatic decreases in environmental lead exposures over the past 15 years make questionable use of earlier data on PbBone concentrations to estimate a contribution of lead from bone; often used by physiologic modelers to predict PbB. X-ray fluorescent techniques estimating PbBone typically have an instrument-based quantitation limit that is too high for use with many young children. While these quantitation limits have improved during the late 1990s, PbBone estimates using an epidemiologic approach to describing these limits for general populations of children may generate values lower than the instrument's quantitation limit. Additional problems that occur if predicting PbB from environmental lead by biokinetic modeling include a) uncertainty regarding the fractional lead absorption by young children; b) questions of bioavailability of specific environmental sources of lead; and c) variability in fractional absorption values over a range of exposures. Additional sources of variability in lead exposures that affect predictions of PbB from models include differences in the prevalence of such child behaviors as intensity of hand-to-mouth activity and pica. In contrast with these sources of uncertainty and variability affecting physiologic modeling of PbB distributions, epidemiologic data reporting PbB values obtained by chemical analyses of blood samples avoid these problems but raise other issues about the validity of the representation of the subsample for the overall population of concern. State and local health department screening programs and/or medical evaluation of individual children provide PbB data that contribute to databases describing the impact of environmental sources on PbB. Overall, application of epidemiologic models involves fewer uncertainties and more readily reflects variability in PbB than does current state-of-the-art biokinetic modeling.

Full text

PDF
1485

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander F. W., Clayton B. E., Delves H. T. Mineral and trace-metal balances in children receiving normal and synthetic diets. Q J Med. 1974 Jan;43(169):89–111. [PubMed] [Google Scholar]
  2. Angle C. R., Manton W. I., Stanek K. L. Stable isotope identification of lead sources in preschool children--the Omaha Study. J Toxicol Clin Toxicol. 1995;33(6):657–662. doi: 10.3109/15563659509010624. [DOI] [PubMed] [Google Scholar]
  3. Barltrop D. The prevalence of pica. Am J Dis Child. 1966 Aug;112(2):116–123. doi: 10.1001/archpedi.1966.02090110060004. [DOI] [PubMed] [Google Scholar]
  4. Barry P. S. A comparison of concentrations of lead in human tissues. Br J Ind Med. 1975 May;32(2):119–139. doi: 10.1136/oem.32.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barry P. S. Concentrations of lead in the tissues of children. Br J Ind Med. 1981 Feb;38(1):61–71. doi: 10.1136/oem.38.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bellinger D., Leviton A., Needleman H. L., Waternaux C., Rabinowitz M. Low-level lead exposure and infant development in the first year. Neurobehav Toxicol Teratol. 1986 Mar-Apr;8(2):151–161. [PubMed] [Google Scholar]
  7. Berlin K., Gerhardsson L., Börjesson J., Lindh E., Lundström N., Schütz A., Skerfving S., Edling C. Lead intoxication caused by skeletal disease. Scand J Work Environ Health. 1995 Aug;21(4):296–300. doi: 10.5271/sjweh.42. [DOI] [PubMed] [Google Scholar]
  8. Bolger P. M., Yess N. J., Gunderson E. L., Troxell T. C., Carrington C. D. Identification and reduction of sources of dietary lead in the United States. Food Addit Contam. 1996 Jan;13(1):53–60. doi: 10.1080/02652039609374380. [DOI] [PubMed] [Google Scholar]
  9. Brody D. J., Pirkle J. L., Kramer R. A., Flegal K. M., Matte T. D., Gunter E. W., Paschal D. C. Blood lead levels in the US population. Phase 1 of the Third National Health and Nutrition Examination Survey (NHANES III, 1988 to 1991) JAMA. 1994 Jul 27;272(4):277–283. doi: 10.1001/jama.272.4.277. [DOI] [PubMed] [Google Scholar]
  10. Casteel S. W., Cowart R. P., Weis C. P., Henningsen G. M., Hoffman E., Brattin W. J., Guzman R. E., Starost M. F., Payne J. T., Stockham S. L. Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL Site of Aspen, Colorado. Fundam Appl Toxicol. 1997 Apr;36(2):177–187. doi: 10.1006/faat.1997.2296. [DOI] [PubMed] [Google Scholar]
  11. Drasch G. A., Böhm J., Baur C. Lead in human bones. Investigations on an occupationally non-exposed population in southern Bavaria (F.R.G.). I. Adults. Sci Total Environ. 1987 Jul;64(3):303–315. doi: 10.1016/0048-9697(87)90252-x. [DOI] [PubMed] [Google Scholar]
  12. Drasch G. A., Ott J. Lead in human bones. Investigations on an occupationally non-exposed population in southern Bavaria (F.R.G.). II. Children. Sci Total Environ. 1988 Jan;68:61–69. doi: 10.1016/0048-9697(88)90361-0. [DOI] [PubMed] [Google Scholar]
  13. Farias P., Borja-Aburto V. H., Rios C., Hertz-Picciotto I., Rojas-Lopez M., Chavez-Ayala R. Blood lead levels in pregnant women of high and low socioeconomic status in Mexico City. Environ Health Perspect. 1996 Oct;104(10):1070–1074. doi: 10.1289/ehp.961041070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Korsch M. J., Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997 Jul;130(1):51–62. doi: 10.1016/s0022-2143(97)90058-5. [DOI] [PubMed] [Google Scholar]
  15. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Patison N., Law A. J., Korsch M. J., Salter M. A. Relationships of lead in breast milk to lead in blood, urine, and diet of the infant and mother. Environ Health Perspect. 1998 Oct;106(10):667–674. doi: 10.1289/ehp.98106667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gulson B. L., Mahaffey K. R., Mizon K. J., Korsch M. J., Cameron M. A., Vimpani G. Contribution of tissue lead to blood lead in adult female subjects based on stable lead isotope methods. J Lab Clin Med. 1995 Jun;125(6):703–712. [PubMed] [Google Scholar]
  17. Gulson B. L., Mahaffey K. R., Vidal M., Jameson C. W., Law A. J., Mizon K. J., Smith A. J., Korsch M. J. Dietary lead intakes for mother/child pairs and relevance to pharmacokinetic models. Environ Health Perspect. 1997 Dec;105(12):1334–1342. doi: 10.1289/ehp.971051334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hammad T. A., Sexton M., Langenberg P. Relationship between blood lead and dietary iron intake in preschool children. A cross-sectional study. Ann Epidemiol. 1996 Jan;6(1):30–33. doi: 10.1016/1047-2797(95)00097-6. [DOI] [PubMed] [Google Scholar]
  19. Heard M. J., Chamberlain A. C. Effect of minerals and food on uptake of lead from the gastrointestinal tract in humans. Hum Toxicol. 1982 Oct;1(4):411–415. doi: 10.1177/096032718200100407. [DOI] [PubMed] [Google Scholar]
  20. Heard M. J., Chamberlain A. C., Sherlock J. C. Uptake of lead by humans and effect of minerals and food. Sci Total Environ. 1983 Sep;30:245–253. doi: 10.1016/0048-9697(83)90016-5. [DOI] [PubMed] [Google Scholar]
  21. Heard M. J., Chamberlain A. C. Uptake of Pb by human skeleton and comparative metabolism of Pb and alkaline earth elements. Health Phys. 1984 Dec;47(6):857–865. doi: 10.1097/00004032-198412000-00006. [DOI] [PubMed] [Google Scholar]
  22. Hu H. Bone lead as a new biologic marker of lead dose: recent findings and implications for public health. Environ Health Perspect. 1998 Aug;106 (Suppl 4):961–967. doi: 10.1289/ehp.98106s4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. James H. M., Hilburn M. E., Blair J. A. Effects of meals and meal times on uptake of lead from the gastrointestinal tract in humans. Hum Toxicol. 1985 Jul;4(4):401–407. doi: 10.1177/096032718500400406. [DOI] [PubMed] [Google Scholar]
  24. KEHOE R. A. The metabolism of lead in man in health and disease. 2(2). The metabolism of lead under abnormal conditions. J R Inst Public Health. 1961 Jun;24:129–143. [PubMed] [Google Scholar]
  25. KEHOE R. A. The metabolism of lead in man in health and disease. I. The normal metabolism of lead. J R Inst Public Health. 1961 Apr;24:81–97. [PubMed] [Google Scholar]
  26. Leggett R. W. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993 Dec;101(7):598–616. doi: 10.1289/ehp.93101598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lepow M. L., Bruckman L., Rubino R. A., Markowtiz S., Gillette M., Kapish J. Role of airborne lead in increased body burden of lead in Hartford children. Environ Health Perspect. 1974 May;7:99–102. doi: 10.1289/ehp.74799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mahaffey K. R., Annest J. L., Roberts J., Murphy R. S. National estimates of blood lead levels: United States, 1976-1980: association with selected demographic and socioeconomic factors. N Engl J Med. 1982 Sep 2;307(10):573–579. doi: 10.1056/NEJM198209023071001. [DOI] [PubMed] [Google Scholar]
  29. Mahaffey K. R., Gartside P. S., Glueck C. J. Blood lead levels and dietary calcium intake in 1- to 11-year-old children: the Second National Health and Nutrition Examination Survey, 1976 to 1980. Pediatrics. 1986 Aug;78(2):257–262. [PubMed] [Google Scholar]
  30. Mahaffey K. R. Nutrition and lead: strategies for public health. Environ Health Perspect. 1995 Sep;103 (Suppl 6):191–196. doi: 10.1289/ehp.95103s6191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Manton W. I. Total contribution of airborne lead to blood lead. Br J Ind Med. 1985 Mar;42(3):168–172. doi: 10.1136/oem.42.3.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Flaherty E. J. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol. 1993 Jan;118(1):16–29. doi: 10.1006/taap.1993.1004. [DOI] [PubMed] [Google Scholar]
  33. Pirkle J. L., Brody D. J., Gunter E. W., Kramer R. A., Paschal D. C., Flegal K. M., Matte T. D. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES) JAMA. 1994 Jul 27;272(4):284–291. [PubMed] [Google Scholar]
  34. Pueschel S. M., Cullen S. M., Howard R. B., Cullinane M. M. Pathogenetic considerations of pica in lead poisoning. Int J Psychiatry Med. 1977;8(1):13–24. doi: 10.2190/ydkm-rhdq-qput-32qh. [DOI] [PubMed] [Google Scholar]
  35. Rabinowitz M. B., Kopple J. D., Wetherill G. W. Effect of food intake and fasting on gastrointestinal lead absorption in humans. Am J Clin Nutr. 1980 Aug;33(8):1784–1788. doi: 10.1093/ajcn/33.8.1784. [DOI] [PubMed] [Google Scholar]
  36. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976 Aug;58(2):260–270. doi: 10.1172/JCI108467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rabinowitz M., Leviton A., Bellinger D. Home refinishing, lead paint, and infant blood lead levels. Am J Public Health. 1985 Apr;75(4):403–404. doi: 10.2105/ajph.75.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Redondo Granado M. J., Alvarez Guisasola F. J., Blanco Quirós A. Estudio de la plumbemia en la población infantil con ferropenia. Med Clin (Barc) 1994 Feb 19;102(6):201–204. [PubMed] [Google Scholar]
  39. Rosen J. F., Pounds J. G. "Severe chronic lead insult that maintains body burdens of lead related to those in the skeleton": observations by Dr. Clair Patterson conclusively demonstrated. Environ Res. 1998 Aug;78(2):140–151. doi: 10.1006/enrs.1997.3830. [DOI] [PubMed] [Google Scholar]
  40. Sayre J. W., Charney E., Vostal J., Pless I. B. House and hand dust as a potential source of childhood lead exposure. Am J Dis Child. 1974 Feb;127(2):167–170. doi: 10.1001/archpedi.1974.02110210017002. [DOI] [PubMed] [Google Scholar]
  41. Smith D. R., Osterloh J. D., Flegal A. R. Use of endogenous, stable lead isotopes to determine release of lead from the skeleton. Environ Health Perspect. 1996 Jan;104(1):60–66. doi: 10.1289/ehp.9610460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wittmers L. E., Jr, Aufderheide A. C., Wallgren J., Rapp G., Jr, Alich A. Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health. 1988 Nov-Dec;43(6):381–391. doi: 10.1080/00039896.1988.9935855. [DOI] [PubMed] [Google Scholar]
  43. Ziegler E. E., Edwards B. B., Jensen R. L., Mahaffey K. R., Fomon S. J. Absorption and retention of lead by infants. Pediatr Res. 1978 Jan;12(1):29–34. doi: 10.1203/00006450-197801000-00008. [DOI] [PubMed] [Google Scholar]
  44. deSilva P. E. Determination of lead in plasma and studies on its relationship to lead in erythrocytes. Br J Ind Med. 1981 Aug;38(3):209–217. doi: 10.1136/oem.38.3.209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES