Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Dec;106(Suppl 6):1589–1594. doi: 10.1289/ehp.98106s61589

Bioavailability of soilborne lead in adults, by stable isotope dilution.

M Maddaloni 1, N Lolacono 1, W Manton 1, C Blum 1, J Drexler 1, J Graziano 1
PMCID: PMC1533442  PMID: 9860919

Abstract

Using stable isotope dilution, we determined the bioavailability of soilborne lead (Pb) in human adult volunteers. Soil from a residential yard at a mining-impacted federal Superfund site that had negligible amounts of other priority pollutants was dried and screened through a 25-micron mesh sieve. The < 250-micron fraction, which likely represents that ingested via hand-to-mouth activity, was then sterilized by exposure to radiation. Ten replicate samples yielded a mean (SD) soil Pb concentration of 2924 +/- 36 ppm, and a mean 206Pb/207Pb ratio of 1.1083 +/- 0.0002, indicating remarkable soil homogeneity. Six adults with 206Pb/207Pb ratios of > 1.190 were admitted to the clinical research center and fasted overnight prior to dosing with 250 micrograms Pb/70 kg bw (i.e., 85.5 mg soil/70 kg) in a gelatin capsule. Blood for Pb and 206Pb/207Pb ratios was obtained at 14 time points through 30 hr. Results of the isotopic analyses from these subjects indicate that on average 26.2% +/- 8.1 of the administered dose was absorbed. Six additional subjects were subsequently studied but ingested soil immediately after a standardized breakfast. Bioavailability in this group was only 2.52% +/- 1.7. Collectively, this study provides the first experimental estimates of soil Pb absorption in humans, and should allow for more precise estimates of health risks due to Pb-contaminated soil.

Full text

PDF
1589

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barltrop D., Meek F. Effect of particle size on lead absorption from the gut. Arch Environ Health. 1979 Jul-Aug;34(4):280–285. doi: 10.1080/00039896.1979.10667414. [DOI] [PubMed] [Google Scholar]
  2. Bowers T. S., Beck B. D., Karam H. S. Assessing the relationship between environmental lead concentrations and adult blood lead levels. Risk Anal. 1994 Apr;14(2):183–189. doi: 10.1111/j.1539-6924.1994.tb00043.x. [DOI] [PubMed] [Google Scholar]
  3. Calabrese E. J., Stanek E. J., Gilbert C. E., Barnes R. M. Preliminary adult soil ingestion estimates: results of a pilot study. Regul Toxicol Pharmacol. 1990 Aug;12(1):88–95. doi: 10.1016/s0273-2300(05)80049-2. [DOI] [PubMed] [Google Scholar]
  4. Campbell B. C., Meredith P. A., Moore M. R., Watson W. S. Kinetics of lead following intravenous administration in man. Toxicol Lett. 1984 May;21(2):231–235. doi: 10.1016/0378-4274(84)90212-1. [DOI] [PubMed] [Google Scholar]
  5. Casteel S. W., Cowart R. P., Weis C. P., Henningsen G. M., Hoffman E., Brattin W. J., Guzman R. E., Starost M. F., Payne J. T., Stockham S. L. Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL Site of Aspen, Colorado. Fundam Appl Toxicol. 1997 Apr;36(2):177–187. doi: 10.1006/faat.1997.2296. [DOI] [PubMed] [Google Scholar]
  6. Chow T. J., Earl J. L. Lead aerosols in the atmosphere: increasing concentrations. Science. 1970 Aug 7;169(3945):577–580. doi: 10.1126/science.169.3945.577. [DOI] [PubMed] [Google Scholar]
  7. Freeman G. B., Johnson J. D., Killinger J. M., Liao S. C., Feder P. I., Davis A. O., Ruby M. V., Chaney R. L., Lovre S. C., Bergstrom P. D. Relative bioavailability of lead from mining waste soil in rats. Fundam Appl Toxicol. 1992 Oct;19(3):388–398. doi: 10.1016/0272-0590(92)90178-k. [DOI] [PubMed] [Google Scholar]
  8. Graziano J. H., Blum C. B., Lolacono N. J., Slavkovich V., Manton W. I., Pond S., Moore M. R. A human in vivo model for the determination of lead bioavailability using stable isotope dilution. Environ Health Perspect. 1996 Feb;104(2):176–179. doi: 10.1289/ehp.96104176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. James H. M., Hilburn M. E., Blair J. A. Effects of meals and meal times on uptake of lead from the gastrointestinal tract in humans. Hum Toxicol. 1985 Jul;4(4):401–407. doi: 10.1177/096032718500400406. [DOI] [PubMed] [Google Scholar]
  10. Leggett R. W. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993 Dec;101(7):598–616. doi: 10.1289/ehp.93101598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morrow P. E., Beiter H., Amato F., Gibb F. R. Pulmonary retention of lead: an experimental study in man. Environ Res. 1980 Apr;21(2):373–384. doi: 10.1016/0013-9351(80)90040-7. [DOI] [PubMed] [Google Scholar]
  12. O'Flaherty E. J. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol. 1993 Jan;118(1):16–29. doi: 10.1006/taap.1993.1004. [DOI] [PubMed] [Google Scholar]
  13. Rabinowitz M. B., Kopple J. D., Wetherill G. W. Effect of food intake and fasting on gastrointestinal lead absorption in humans. Am J Clin Nutr. 1980 Aug;33(8):1784–1788. doi: 10.1093/ajcn/33.8.1784. [DOI] [PubMed] [Google Scholar]
  14. Steele M. J., Beck B. D., Murphy B. L., Strauss H. S. Assessing the contribution from lead in mining wastes to blood lead. Regul Toxicol Pharmacol. 1990 Apr;11(2):158–190. doi: 10.1016/0273-2300(90)90019-8. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES