Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1993 Dec;94(3):500–506. doi: 10.1111/j.1365-2249.1993.tb08225.x

Identification of human T cell epitopes in the Mycobacterium leprae heat shock protein 70-kD antigen.

E Adams 1, W J Britton 1, A Morgan 1, A L Goodsall 1, A Basten 1
PMCID: PMC1534433  PMID: 7504601

Abstract

In a number of pathogens, heat shock proteins (hsp) stimulate humoral and cellular immune responses despite significant sequence identity with host hsp. The 70-kD hsp of Mycobacterium leprae, which shares 47% identity with human hsp70 at the protein level, elicited a T cell response in most Myco. bovis (bacille Calmette-Guérin (BCG)) vaccinees as well as leprosy and tuberculosis patients and their contacts. In order to locate T cell epitopes, DNA fragments encoding portions of the 70-kD hsp were expressed in the vector pGEX-2T and tested for T cell reactivity in an in vitro proliferative assay. Cultures of peripheral blood mononuclear cells (PBMC) from BCG vaccinees indicated that the C-terminal half of the molecule contained multiple T cell epitopes, as the T cells from a majority of Myco. leprae hsp70-reactive individuals responded to C-344. Lower proportions of patients with paucibacillary leprosy (36%) and tuberculosis patients (16%) responded to C-344. The smaller C-142 fragment which includes the terminal 70 residues unique to Myco. leprae and is the target for the human antibody response elicited a cellular response in few patients and no vaccinees. In order to map T cell epitopes, two series of synthetic peptides encompassing the region 278-502 were prepared. Using overlapping 12mer and 20mer peptides, this region of the molecule was found to contain several potential T cell epitopes. The longer peptides gave a clearer indication of reactive sequences including regions of the molecule which were not identified with the 12mer peptides. Fine mapping of reactive peptide pools using the 12mer peptides identified two T cell epitopes. Although both were located in regions of the molecule shared with Myco. tuberculosis, one appeared to be cross-reactive with the equivalent human sequence, and thus has the potential to initiate autoimmune responses.

Full text

PDF
500

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams E., Garsia R. J., Hellqvist L., Holt P., Basten A. T cell reactivity to the purified mycobacterial antigens p65 and p70 in leprosy patients and their household contacts. Clin Exp Immunol. 1990 May;80(2):206–212. doi: 10.1111/j.1365-2249.1990.tb05235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson D. C., Barry M. E., Buchanan T. M. Exact definition of species-specific and cross-reactive epitopes of the 65-kilodalton protein of Mycobacterium leprae using synthetic peptides. J Immunol. 1988 Jul 15;141(2):607–613. [PubMed] [Google Scholar]
  3. Behr C., Sarthou J. L., Rogier C., Trape J. F., Dat M. H., Michel J. C., Aribot G., Dieye A., Claverie J. M., Druihle P. Antibodies and reactive T cells against the malaria heat-shock protein Pf72/Hsp70-1 and derived peptides in individuals continuously exposed to Plasmodium falciparum. J Immunol. 1992 Nov 15;149(10):3321–3330. [PubMed] [Google Scholar]
  4. Brett S. J., Lamb J. R., Cox J. H., Rothbard J. B., Mehlert A., Ivanyi J. Differential pattern of T cell recognition of the 65-kDa mycobacterial antigen following immunization with the whole protein or peptides. Eur J Immunol. 1989 Jul;19(7):1303–1310. doi: 10.1002/eji.1830190723. [DOI] [PubMed] [Google Scholar]
  5. Britton W. J., Hellqvist L., Basten A., Inglis A. S. Immunoreactivity of a 70 kD protein purified from Mycobacterium bovis Bacillus Calmette-Guerin by monoclonal antibody affinity chromatography. J Exp Med. 1986 Sep 1;164(3):695–708. doi: 10.1084/jem.164.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Britton W. J., Hellqvist L., Basten A., Raison R. L. Mycobacterium leprae antigens involved in human immune responses. I. Identification of four antigens by monoclonal antibodies. J Immunol. 1985 Dec;135(6):4171–4177. [PubMed] [Google Scholar]
  7. Buchmeier N. A., Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science. 1990 May 11;248(4956):730–732. doi: 10.1126/science.1970672. [DOI] [PubMed] [Google Scholar]
  8. Davenport M. P., McKenzie K. R., Basten A., Britton W. J. The variable C-terminal region of the Mycobacterium leprae 70-kilodalton heat shock protein is the target for humoral immune responses. Infect Immun. 1992 Mar;60(3):1170–1177. doi: 10.1128/iai.60.3.1170-1177.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elias D., Markovits D., Reshef T., van der Zee R., Cohen I. R. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1576–1580. doi: 10.1073/pnas.87.4.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garsia R. J., Hellqvist L., Booth R. J., Radford A. J., Britton W. J., Astbury L., Trent R. J., Basten A. Homology of the 70-kilodalton antigens from Mycobacterium leprae and Mycobacterium bovis with the Mycobacterium tuberculosis 71-kilodalton antigen and with the conserved heat shock protein 70 of eucaryotes. Infect Immun. 1989 Jan;57(1):204–212. doi: 10.1128/iai.57.1.204-212.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Janson A. A., Klatser P. R., van der Zee R., Cornelisse Y. E., de Vries R. R., Thole J. E., Ottenhoff T. H. A systematic molecular analysis of the T cell-stimulating antigens from Mycobacterium leprae with T cell clones of leprosy patients. Identification of a novel M. leprae HSP 70 fragment by M. leprae-specific T cells. J Immunol. 1991 Nov 15;147(10):3530–3537. [PubMed] [Google Scholar]
  13. Jindal S., Dudani A. K., Singh B., Harley C. B., Gupta R. S. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol. 1989 May;9(5):2279–2283. doi: 10.1128/mcb.9.5.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kumar N., Zhao Y., Graves P., Perez Folgar J., Maloy L., Zheng H. Human immune response directed against Plasmodium falciparum heat shock-related proteins. Infect Immun. 1990 May;58(5):1408–1414. doi: 10.1128/iai.58.5.1408-1414.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maeji N. J., Bray A. M., Geysen H. M. Multi-pin peptide synthesis strategy for T cell determinant analysis. J Immunol Methods. 1990 Nov 6;134(1):23–33. doi: 10.1016/0022-1759(90)90108-8. [DOI] [PubMed] [Google Scholar]
  16. Margalit H., Spouge J. L., Cornette J. L., Cease K. B., Delisi C., Berzofsky J. A. Prediction of immunodominant helper T cell antigenic sites from the primary sequence. J Immunol. 1987 Apr 1;138(7):2213–2229. [PubMed] [Google Scholar]
  17. McKenzie K. R., Adams E., Britton W. J., Garsia R. J., Basten A. Sequence and immunogenicity of the 70-kDa heat shock protein of Mycobacterium leprae. J Immunol. 1991 Jul 1;147(1):312–319. [PubMed] [Google Scholar]
  18. Ottenhoff T. H., Mutis T. Specific killing of cytotoxic T cells and antigen-presenting cells by CD4+ cytotoxic T cell clones. A novel potentially immunoregulatory T-T cell interaction in man. J Exp Med. 1990 Jun 1;171(6):2011–2024. doi: 10.1084/jem.171.6.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255–273. [PubMed] [Google Scholar]
  20. Rudensky AYu, Preston-Hurlburt P., Hong S. C., Barlow A., Janeway C. A., Jr Sequence analysis of peptides bound to MHC class II molecules. Nature. 1991 Oct 17;353(6345):622–627. doi: 10.1038/353622a0. [DOI] [PubMed] [Google Scholar]
  21. Shinnick T. M. Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol. 1991;167:145–160. doi: 10.1007/978-3-642-75875-1_9. [DOI] [PubMed] [Google Scholar]
  22. Vordermeier H. M., Harris D. P., Friscia G., Román E., Surcel H. M., Moreno C., Pasvol G., Ivanyi J. T cell repertoire in tuberculosis: selective anergy to an immunodominant epitope of the 38-kDa antigen in patients with active disease. Eur J Immunol. 1992 Oct;22(10):2631–2637. doi: 10.1002/eji.1830221024. [DOI] [PubMed] [Google Scholar]
  23. Wiertz E. J., van Gaans-van den Brink J. A., Gausepohl H., Prochnicka-Chalufour A., Hoogerhout P., Poolman J. T. Identification of T cell epitopes occurring in a meningococcal class 1 outer membrane protein using overlapping peptides assembled with simultaneous multiple peptide synthesis. J Exp Med. 1992 Jul 1;176(1):79–88. doi: 10.1084/jem.176.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Young R. A. Stress proteins and immunology. Annu Rev Immunol. 1990;8:401–420. doi: 10.1146/annurev.iy.08.040190.002153. [DOI] [PubMed] [Google Scholar]
  25. van Eden W., Thole J. E., van der Zee R., Noordzij A., van Embden J. D., Hensen E. J., Cohen I. R. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature. 1988 Jan 14;331(6152):171–173. doi: 10.1038/331171a0. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES