Abstract
Following infection with HIV, patients exhibit lymphocyte dysfunction before the loss of CD4+ T cells. The major HIV surface glycoprotein, gp120, can modulate lymphocyte function in vitro; however, the mechanism by which gp120 affects T lymphocyte signal transduction is controversial. We have used Peptide T, a synthetic octapeptide derived from a conserved, CD4 binding region of gp120, to examine gp120-related modulation of lymphocyte signal transduction. Activation of lymphocytes through the T cell receptor (TCR) in collaboration with cell surface accessory molecules results in rapid increases in tyrosine phosphorylation, probably through the recruitment and activation of src-family protein tyrosine kinases (PTK) such as lck and fyn which have been implicated in mediating the proximal signalling events mediated through the TCR. To identify potential mechanisms by which gp120 could modulate the function of T lymphocytes, we determined the effect of Peptide T on normal, activated peripheral blood lymphoblasts. Treatment of normal, activated peripheral blood lymphoblasts with Peptide T (10(-9) M) for 60 min transiently reduced levels of protein tyrosine phosphorylation (ptyr). Reduction in levels of cellular ptyr was associated with transient inhibition of the activity of total cellular and CD4-associated p56lck kinase activity (80%). Peptide T also induced a small delayed reduction in the p59fyn activity (up to 42%). Despite the decrease in total cellular ptyr levels, pp60c-src kinase activity was increased 11-fold following treatment with Peptide T. Peptide T pretreatment also induced tyrosine phosphorylation of a 48-kD CD4-associated protein, indicating that Peptide T may have multiple effects. Peptide T did not alter the levels of total cellular p56lck enzyme, nor did it directly inhibit the activity of purified p56lck. These results are consistent with a Peptide T-dependent modulation of PTK regulation, and support the potential of gp120 to interfere with T lymphocyte signal transduction in activated T lymphocytes.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ascher M. S., Sheppard H. W. AIDS as immune system activation. II. The panergic imnesia hypothesis. J Acquir Immune Defic Syndr. 1990;3(2):177–191. [PubMed] [Google Scholar]
- Autero M., Saharinen J., Pessa-Morikawa T., Soula-Rothhut M., Oetken C., Gassmann M., Bergman M., Alitalo K., Burn P., Gahmberg C. G. Tyrosine phosphorylation of CD45 phosphotyrosine phosphatase by p50csk kinase creates a binding site for p56lck tyrosine kinase and activates the phosphatase. Mol Cell Biol. 1994 Feb;14(2):1308–1321. doi: 10.1128/mcb.14.2.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bank I., Chess L. Perturbation of the T4 molecule transmits a negative signal to T cells. J Exp Med. 1985 Oct 1;162(4):1294–1303. doi: 10.1084/jem.162.4.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branch D. R., Mills G. B. pp60c-src expression is induced by activation of normal human T lymphocytes. J Immunol. 1995 Apr 15;154(8):3678–3685. [PubMed] [Google Scholar]
- Burgess K. E., Odysseos A. D., Zalvan C., Druker B. J., Anderson P., Schlossman S. F., Rudd C. E. Biochemical identification of a direct physical interaction between the CD4:p56lck and Ti(TcR)/CD3 complexes. Eur J Immunol. 1991 Jul;21(7):1663–1668. doi: 10.1002/eji.1830210712. [DOI] [PubMed] [Google Scholar]
- Capon D. J., Ward R. H. The CD4-gp120 interaction and AIDS pathogenesis. Annu Rev Immunol. 1991;9:649–678. doi: 10.1146/annurev.iy.09.040191.003245. [DOI] [PubMed] [Google Scholar]
- Cefai D., Debre P., Kaczorek M., Idziorek T., Autran B., Bismuth G. Human immunodeficiency virus-1 glycoproteins gp120 and gp160 specifically inhibit the CD3/T cell-antigen receptor phosphoinositide transduction pathway. J Clin Invest. 1990 Dec;86(6):2117–2124. doi: 10.1172/JCI114950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chow L. M., Fournel M., Davidson D., Veillette A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature. 1993 Sep 9;365(6442):156–160. doi: 10.1038/365156a0. [DOI] [PubMed] [Google Scholar]
- Cooper J. A., Hunter T. Identification and characterization of cellular targets for tyrosine protein kinases. J Biol Chem. 1983 Jan 25;258(2):1108–1115. [PubMed] [Google Scholar]
- Corado J., Mazerolles F., Le Deist F., Barbat C., Kaczorek M., Fischer A. Inhibition of CD4+ T cell activation and adhesion by peptides derived from the gp160. J Immunol. 1991 Jul 15;147(2):475–482. [PubMed] [Google Scholar]
- Cullen B. R. Regulation of HIV-1 gene expression. FASEB J. 1991 Jul;5(10):2361–2368. doi: 10.1096/fasebj.5.10.1712325. [DOI] [PubMed] [Google Scholar]
- Diamond D. C., Sleckman B. P., Gregory T., Lasky L. A., Greenstein J. L., Burakoff S. J. Inhibition of CD4+ T cell function by the HIV envelope protein, gp120. J Immunol. 1988 Dec 1;141(11):3715–3717. [PubMed] [Google Scholar]
- Fauci A. S., Schnittman S. M., Poli G., Koenig S., Pantaleo G. NIH conference. Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1991 Apr 15;114(8):678–693. doi: 10.7326/0003-4819-114-8-678. [DOI] [PubMed] [Google Scholar]
- Fauci A. S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988 Feb 5;239(4840):617–622. doi: 10.1126/science.3277274. [DOI] [PubMed] [Google Scholar]
- Fleury S., Lamarre D., Meloche S., Ryu S. E., Cantin C., Hendrickson W. A., Sekaly R. P. Mutational analysis of the interaction between CD4 and class II MHC: class II antigens contact CD4 on a surface opposite the gp120-binding site. Cell. 1991 Sep 6;66(5):1037–1049. doi: 10.1016/0092-8674(91)90447-7. [DOI] [PubMed] [Google Scholar]
- Fuchs D., Weiss G., Reibnegger G., Wachter H. The role of neopterin as a monitor of cellular immune activation in transplantation, inflammatory, infectious, and malignant diseases. Crit Rev Clin Lab Sci. 1992;29(3-4):307–341. doi: 10.3109/10408369209114604. [DOI] [PubMed] [Google Scholar]
- Habeshaw J. A., Dalgleish A. G., Bountiff L., Newell A. L., Wilks D., Walker L. C., Manca F. AIDS pathogenesis: HIV envelope and its interaction with cell proteins. Immunol Today. 1990 Nov;11(11):418–425. doi: 10.1016/0167-5699(90)90162-3. [DOI] [PubMed] [Google Scholar]
- Habeshaw J., Hounsell E., Dalgleish A. Does the HIV envelope induce a chronic graft-versus-host-like disease? Immunol Today. 1992 Jun;13(6):207–210. doi: 10.1016/0167-5699(92)90155-Z. [DOI] [PubMed] [Google Scholar]
- Hivroz C., Mazerolles F., Soula M., Fagard R., Graton S., Meloche S., Sekaly R. P., Fischer A. Human immunodeficiency virus gp120 and derived peptides activate protein tyrosine kinase p56lck in human CD4 T lymphocytes. Eur J Immunol. 1993 Mar;23(3):600–607. doi: 10.1002/eji.1830230303. [DOI] [PubMed] [Google Scholar]
- Horak I. D., Popovic M., Horak E. M., Lucas P. J., Gress R. E., June C. H., Bolen J. B. No T-cell tyrosine protein kinase signalling or calcium mobilization after CD4 association with HIV-1 or HIV-1 gp120. Nature. 1990 Dec 6;348(6301):557–560. doi: 10.1038/348557a0. [DOI] [PubMed] [Google Scholar]
- Juszczak R. J., Turchin H., Truneh A., Culp J., Kassis S. Effect of human immunodeficiency virus gp120 glycoprotein on the association of the protein tyrosine kinase p56lck with CD4 in human T lymphocytes. J Biol Chem. 1991 Jun 15;266(17):11176–11183. [PubMed] [Google Scholar]
- Kamps M. P., Sefton B. M. Acid and base hydrolysis of phosphoproteins bound to immobilon facilitates analysis of phosphoamino acids in gel-fractionated proteins. Anal Biochem. 1989 Jan;176(1):22–27. doi: 10.1016/0003-2697(89)90266-2. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Samelson L. E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991 Mar 8;64(5):875–878. doi: 10.1016/0092-8674(91)90310-u. [DOI] [PubMed] [Google Scholar]
- Koh S. W. Signal transduction through the vasoactive intestinal peptide receptor stimulates phosphorylation of the tyrosine kinase pp60c-src. Biochem Biophys Res Commun. 1991 Jan 31;174(2):452–458. doi: 10.1016/0006-291x(91)91437-h. [DOI] [PubMed] [Google Scholar]
- Kornfeld H., Cruikshank W. W., Pyle S. W., Berman J. S., Center D. M. Lymphocyte activation by HIV-1 envelope glycoprotein. Nature. 1988 Sep 29;335(6189):445–448. doi: 10.1038/335445a0. [DOI] [PubMed] [Google Scholar]
- Lamarre D., Capon D. J., Karp D. R., Gregory T., Long E. O., Sékaly R. P. Class II MHC molecules and the HIV gp 120 envelope protein interact with functionally distinct regions of the CD4 molecule. EMBO J. 1989 Nov;8(11):3271–3277. doi: 10.1002/j.1460-2075.1989.tb08487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahalingam M., Peakman M., Davies E. T., Pozniak A., McManus T. J., Vergani D. T cell activation and disease severity in HIV infection. Clin Exp Immunol. 1993 Sep;93(3):337–343. doi: 10.1111/j.1365-2249.1993.tb08182.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann D. L., Lasane F., Popovic M., Arthur L. O., Robey W. G., Blattner W. A., Newman M. J. HTLV-III large envelope protein (gp120) suppresses PHA-induced lymphocyte blastogenesis. J Immunol. 1987 Apr 15;138(8):2640–2644. [PubMed] [Google Scholar]
- Mills G. B., Arima N., May C., Hill M., Schmandt R., Li J., Miyamoto N. G., Greene W. C. Neither the LCK nor the FYN kinases are obligatory for IL-2-mediated signal transduction in HTLV-I-infected human T cells. Int Immunol. 1992 Nov;4(11):1233–1243. doi: 10.1093/intimm/4.11.1233. [DOI] [PubMed] [Google Scholar]
- Nye K. E., Riley G. A., Pinching A. J. The defect seen in the phosphatidylinositol hydrolysis pathway in HIV-infected lymphocytes and lymphoblastoid cells is due to inhibition of the inositol 1,4,5-trisphosphate 1,3,4,5-tetrakisphosphate 5-phosphomonoesterase. Clin Exp Immunol. 1992 Jul;89(1):89–93. doi: 10.1111/j.1365-2249.1992.tb06883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orloff G. M., Kennedy M. S., Dawson C., McDougal J. S. HIV-1 binding to CD4 T cells does not induce a Ca2+ influx or lead to activation of protein kinases. AIDS Res Hum Retroviruses. 1991 Jul;7(7):587–593. doi: 10.1089/aid.1991.7.587. [DOI] [PubMed] [Google Scholar]
- Pert C. B., Hill J. M., Ruff M. R., Berman R. M., Robey W. G., Arthur L. O., Ruscetti F. W., Farrar W. L. Octapeptides deduced from the neuropeptide receptor-like pattern of antigen T4 in brain potently inhibit human immunodeficiency virus receptor binding and T-cell infectivity. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9254–9258. doi: 10.1073/pnas.83.23.9254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pert C. B., Ruff M. R., Hill J. M. AIDS as a neuropeptide disorder: peptide T, VIP, and the HIV receptor. Psychopharmacol Bull. 1988;24(3):315–319. [PubMed] [Google Scholar]
- Plaut M. Lymphocyte hormone receptors. Annu Rev Immunol. 1987;5:621–669. doi: 10.1146/annurev.iy.05.040187.003201. [DOI] [PubMed] [Google Scholar]
- Ramsdale T. E., Andrews P. R., Nice E. C. Verification of the interaction between peptide T and CD4 using surface plasmon resonance. FEBS Lett. 1993 Nov 1;333(3):217–222. doi: 10.1016/0014-5793(93)80657-g. [DOI] [PubMed] [Google Scholar]
- Rudd C. E., Anderson P., Morimoto C., Streuli M., Schlossman S. F. Molecular interactions, T-cell subsets and a role of the CD4/CD8:p56lck complex in human T-cell activation. Immunol Rev. 1989 Oct;111:225–266. doi: 10.1111/j.1600-065x.1989.tb00548.x. [DOI] [PubMed] [Google Scholar]
- Ruff M. R., Smith C., Kingan T., Jaffe H., Heseltine P., Gill M. A., Mayer K., Pert C. B., Bridge T. P. Pharmacokinetics of peptide T in patients with acquired immunodeficiency syndrome (AIDS). Prog Neuropsychopharmacol Biol Psychiatry. 1991;15(6):791–801. doi: 10.1016/0278-5846(91)90008-o. [DOI] [PubMed] [Google Scholar]
- Sadat-Sowti B., Debre P. Cytokines and HIV infection. Eur Cytokine Netw. 1992 Nov-Dec;3(6):515–521. [PubMed] [Google Scholar]
- Schmandt R., Hill M., Amendola A., Mills G. B., Hogg D. IL-2-induced expression of TTK, a serine, threonine, tyrosine kinase, correlates with cell cycle progression. J Immunol. 1994 Jan 1;152(1):96–105. [PubMed] [Google Scholar]
- Tyring S. K., Cauda R., Tumbarello M., Ortona L., Kennedy R. C., Chanh T. C., Kanda P. Synthetic peptides corresponding to sequences in HIV envelope gp41 and gp120 enhance in vitro production of interleukin-1 and tumor necrosis factor but depress production of interferon-alpha, interferon-gamma and interleukin-2. Viral Immunol. 1991 Spring;4(1):33–42. doi: 10.1089/vim.1991.4.33. [DOI] [PubMed] [Google Scholar]
- Veillette A., Bookman M. A., Horak E. M., Bolen J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988 Oct 21;55(2):301–308. doi: 10.1016/0092-8674(88)90053-0. [DOI] [PubMed] [Google Scholar]
- Veillette A., Bookman M. A., Horak E. M., Samelson L. E., Bolen J. B. Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature. 1989 Mar 16;338(6212):257–259. doi: 10.1038/338257a0. [DOI] [PubMed] [Google Scholar]
- Weinhold K. J., Lyerly H. K., Stanley S. D., Austin A. A., Matthews T. J., Bolognesi D. P. HIV-1 GP120-mediated immune suppression and lymphocyte destruction in the absence of viral infection. J Immunol. 1989 May 1;142(9):3091–3097. [PubMed] [Google Scholar]
- Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
- Weiss A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell. 1993 Apr 23;73(2):209–212. doi: 10.1016/0092-8674(93)90221-b. [DOI] [PubMed] [Google Scholar]
- Zorn N. E., Weill C. L., Russell D. H. The HIV protein, GP120, activates nuclear protein kinase C in nuclei from lymphocytes and brain. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1133–1139. doi: 10.1016/0006-291x(90)90984-u. [DOI] [PubMed] [Google Scholar]






