Abstract
The CD28 receptor on CD4+ and CD8+ T cells interacts with B7 molecules on antigen-presenting cells (APC) to generate essential costimulatory signals. The cytolytic potential of CD8+ T cells could be linked to CD28 expression. Since HIV induces dysfunction of both CD4+ and CD8+ T cells, we evaluated CD28 expression and function in both subsets during HIV infection. CD28 expression on CD8+ T cells from HIV+ subjects was strongly reduced in a disease stage-related fashion. CD28- CD8+ T cells preferentially expressed CD57 and CD11b, but lacked CD26 and IL-2R alpha. The CD8+ T cells from the patients showed a significantly reduced proliferative response to co-stimulation with cell-bound anti-CD3 and B7. Nevertheless, when stimulated with plate-fixed anti-CD3, CD8+ T cells from HIV-infected subjects proliferated normally, and normal levels of IL-2R alpha and transferrin-receptor could be induced on CD28- CD8+ T cells from the patients. In addition, stimulation with plate-fixed anti-CD3 induced proliferative responses in highly purified CD28- CD8+ T cells from both HIV- and HIV+ persons. Furthermore, the increased cytotoxic activity of peripheral blood mononuclear cells (PBMC) from HIV+ subjects, measured in an anti-CD3 redirected assay, was predominantly exerted by CD28- CD57+ T cells. CD4+ T cells from the patients showed a slight but significant CD28 down-regulation and were slightly hyporesponsive to B7 co-stimulation. Decrease of CD28 on CD8+ T cells from HIV+ subjects is associated with an impaired response to co-stimulation via B7. CD28- CD8+ T cells from seropositives, however, are not completely inert, since they contain in vivo activated CTL and they can be additionally activated through a B7-independent stimulation.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adorini L., Nagy Z. A. Peptide competition for antigen presentation. Immunol Today. 1990 Jan;11(1):21–24. doi: 10.1016/0167-5699(90)90006-u. [DOI] [PubMed] [Google Scholar]
- Azuma M., Cayabyab M., Buck D., Phillips J. H., Lanier L. L. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J Exp Med. 1992 Feb 1;175(2):353–360. doi: 10.1084/jem.175.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azuma M., Ito D., Yagita H., Okumura K., Phillips J. H., Lanier L. L., Somoza C. B70 antigen is a second ligand for CTLA-4 and CD28. Nature. 1993 Nov 4;366(6450):76–79. doi: 10.1038/366076a0. [DOI] [PubMed] [Google Scholar]
- Azuma M., Phillips J. H., Lanier L. L. CD28- T lymphocytes. Antigenic and functional properties. J Immunol. 1993 Feb 15;150(4):1147–1159. [PubMed] [Google Scholar]
- Azuma M., Yssel H., Phillips J. H., Spits H., Lanier L. L. Functional expression of B7/BB1 on activated T lymphocytes. J Exp Med. 1993 Mar 1;177(3):845–850. doi: 10.1084/jem.177.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borthwick N. J., Bofill M., Gombert W. M., Akbar A. N., Medina E., Sagawa K., Lipman M. C., Johnson M. A., Janossy G. Lymphocyte activation in HIV-1 infection. II. Functional defects of CD28- T cells. AIDS. 1994 Apr;8(4):431–441. doi: 10.1097/00002030-199404000-00004. [DOI] [PubMed] [Google Scholar]
- Brinchmann J. E., Dobloug J. H., Heger B. H., Haaheim L. L., Sannes M., Egeland T. Expression of costimulatory molecule CD28 on T cells in human immunodeficiency virus type 1 infection: functional and clinical correlations. J Infect Dis. 1994 Apr;169(4):730–738. doi: 10.1093/infdis/169.4.730. [DOI] [PubMed] [Google Scholar]
- Choremi-Papadopoulou H., Viglis V., Gargalianos P., Kordossis T., Iniotaki-Theodoraki A., Kosmidis J. Downregulation of CD28 surface antigen on CD4+ and CD8+ T lymphocytes during HIV-1 infection. J Acquir Immune Defic Syndr. 1994 Mar;7(3):245–253. [PubMed] [Google Scholar]
- Damle N. K., Mohagheghpour N., Hansen J. A., Engleman E. G. Alloantigen-specific cytotoxic and suppressor T lymphocytes are derived from phenotypically distinct precursors. J Immunol. 1983 Nov;131(5):2296–2300. [PubMed] [Google Scholar]
- De Meester I., Vanham G., Kestens L., Vanhoof G., Bosmans E., Gigase P., Scharpé S. Binding of adenosine deaminase to the lymphocyte surface via CD26. Eur J Immunol. 1994 Mar;24(3):566–570. doi: 10.1002/eji.1830240311. [DOI] [PubMed] [Google Scholar]
- Dianzani U., Pileri A., Bianchi A., Camponi A., Tamponi G., Massaia M. Biochemical and immunologic abnormalities in peripheral blood T lymphocytes of patients with hemophilia A. Eur J Haematol. 1988 Oct;41(4):334–340. doi: 10.1111/j.1600-0609.1988.tb00206.x. [DOI] [PubMed] [Google Scholar]
- Freedman A. S., Freeman G. J., Rhynhart K., Nadler L. M. Selective induction of B7/BB-1 on interferon-gamma stimulated monocytes: a potential mechanism for amplification of T cell activation through the CD28 pathway. Cell Immunol. 1991 Oct 15;137(2):429–437. doi: 10.1016/0008-8749(91)90091-o. [DOI] [PubMed] [Google Scholar]
- Freeman G. J., Freedman A. S., Segil J. M., Lee G., Whitman J. F., Nadler L. M. B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol. 1989 Oct 15;143(8):2714–2722. [PubMed] [Google Scholar]
- Gruters R. A., Terpstra F. G., De Goede R. E., Mulder J. W., De Wolf F., Schellekens P. T., Van Lier R. A., Tersmette M., Miedema F. Immunological and virological markers in individuals progressing from seroconversion to AIDS. AIDS. 1991 Jul;5(7):837–844. doi: 10.1097/00002030-199107000-00007. [DOI] [PubMed] [Google Scholar]
- Gruters R. A., Terpstra F. G., De Jong R., Van Noesel C. J., Van Lier R. A., Miedema F. Selective loss of T cell functions in different stages of HIV infection. Early loss of anti-CD3-induced T cell proliferation followed by decreased anti-CD3-induced cytotoxic T lymphocyte generation in AIDS-related complex and AIDS. Eur J Immunol. 1990 May;20(5):1039–1044. doi: 10.1002/eji.1830200514. [DOI] [PubMed] [Google Scholar]
- Hafler D. A., Fox D. A., Benjamin D., Weiner H. L. Antigen reactive memory T cells are defined by Ta1. J Immunol. 1986 Jul 15;137(2):414–418. [PubMed] [Google Scholar]
- Harding F. A., Allison J. P. CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help. J Exp Med. 1993 Jun 1;177(6):1791–1796. doi: 10.1084/jem.177.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann B., Nishanian P., Fahey J. L., Esmail I., Jackson A. L., Detels R., Cumberland W. Serum increases and lymphoid cell surface losses of IL-2 receptor CD25 in HIV infection: distinctive parameters of HIV-induced change. Clin Immunol Immunopathol. 1991 Nov;61(2 Pt 1):212–224. doi: 10.1016/s0090-1229(05)80025-x. [DOI] [PubMed] [Google Scholar]
- Israël-Biet D., Venet A., Beldjord K., Andrieu J. M., Even P. Autoreactive cytotoxicity in HIV-infected individuals. Clin Exp Immunol. 1990 Jul;81(1):18–24. doi: 10.1111/j.1365-2249.1990.tb05285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konttinen Y. T., Bergroth V., Nordström D., Segerberg-Konttinen M., Tolvanen E. Expression of MHC class II antigen, interleukin-2 receptor, transferrin receptor and gp 40/80 glycoprotein during different phases of a normal PHA-driven lymphocyte activation in vitro. Acta Pathol Microbiol Immunol Scand C. 1986 Oct;94(5):181–186. doi: 10.1111/j.1699-0463.1986.tb02109.x. [DOI] [PubMed] [Google Scholar]
- Landay A. L., Mackewicz C. E., Levy J. A. An activated CD8+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status. Clin Immunol Immunopathol. 1993 Oct;69(1):106–116. doi: 10.1006/clin.1993.1157. [DOI] [PubMed] [Google Scholar]
- Legendre C. M., Forbes R. D., Loertscher R., Guttmann R. D. CD4+/Leu-7+ large granular lymphocytes in long-term renal allograft recipients. A subset of atypical T cells. Transplantation. 1989 Jun;47(6):964–971. doi: 10.1097/00007890-198906000-00010. [DOI] [PubMed] [Google Scholar]
- Lewis D. E., Tang D. S., Adu-Oppong A., Schober W., Rodgers J. R. Anergy and apoptosis in CD8+ T cells from HIV-infected persons. J Immunol. 1994 Jul 1;153(1):412–420. [PubMed] [Google Scholar]
- Linsley P. S., Ledbetter J. A. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993;11:191–212. doi: 10.1146/annurev.iy.11.040193.001203. [DOI] [PubMed] [Google Scholar]
- Lorré K., Kasran A., Van Vaeck F., de Boer M., Ceuppens J. L. Interleukin-1 and B7/CD28 interaction regulate interleukin-6 production by human T cells. Clin Immunol Immunopathol. 1994 Jan;70(1):81–90. doi: 10.1006/clin.1994.1014. [DOI] [PubMed] [Google Scholar]
- Mackewicz C., Levy J. A. CD8+ cell anti-HIV activity: nonlytic suppression of virus replication. AIDS Res Hum Retroviruses. 1992 Jun;8(6):1039–1050. doi: 10.1089/aid.1992.8.1039. [DOI] [PubMed] [Google Scholar]
- McFarland H. I., Nahill S. R., Maciaszek J. W., Welsh R. M. CD11b (Mac-1): a marker for CD8+ cytotoxic T cell activation and memory in virus infection. J Immunol. 1992 Aug 15;149(4):1326–1333. [PubMed] [Google Scholar]
- Morishita Y., Sao H., Hansen J. A., Martin P. J. A distinct subset of human CD4+ cells with a limited alloreactive T cell receptor repertoire. J Immunol. 1989 Nov 1;143(9):2783–2789. [PubMed] [Google Scholar]
- Phillips J. H., Lanier L. L. Lectin-dependent and anti-CD3 induced cytotoxicity are preferentially mediated by peripheral blood cytotoxic T lymphocytes expressing Leu-7 antigen. J Immunol. 1986 Mar 1;136(5):1579–1585. [PubMed] [Google Scholar]
- Saukkonen J. J., Kornfeld H., Berman J. S. Expansion of a CD8+CD28- cell population in the blood and lung of HIV-positive patients. J Acquir Immune Defic Syndr. 1993 Nov;6(11):1194–1204. [PubMed] [Google Scholar]
- Thompson C. B., Lindsten T., Ledbetter J. A., Kunkel S. L., Young H. A., Emerson S. G., Leiden J. M., June C. H. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1333–1337. doi: 10.1073/pnas.86.4.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Gool S. W., de Boer M., Ceuppens J. L. CD28 ligation by monoclonal antibodies or B7/BB1 provides an accessory signal for the cyclosporin A-resistant generation of cytotoxic T cell activity. J Immunol. 1993 Apr 15;150(8 Pt 1):3254–3263. [PubMed] [Google Scholar]
- Van de Velde H., Lorré K., Bakkus M., Thielemans K., Ceuppens J. L., de Boer M. CD45RO+ memory T cells but not CD45RA+ naive T cells can be efficiently activated by remote co-stimulation with B7. Int Immunol. 1993 Nov;5(11):1483–1487. doi: 10.1093/intimm/5.11.1483. [DOI] [PubMed] [Google Scholar]
- Vandenberghe P., Delabie J., de Boer M., De Wolf-Peeters C., Ceuppens J. L. In situ expression of B7/BB1 on antigen-presenting cells and activated B cells: an immunohistochemical study. Int Immunol. 1993 Mar;5(3):317–321. doi: 10.1093/intimm/5.3.317. [DOI] [PubMed] [Google Scholar]
- Vandenberghe P., Freeman G. J., Nadler L. M., Fletcher M. C., Kamoun M., Turka L. A., Ledbetter J. A., Thompson C. B., June C. H. Antibody and B7/BB1-mediated ligation of the CD28 receptor induces tyrosine phosphorylation in human T cells. J Exp Med. 1992 Apr 1;175(4):951–960. doi: 10.1084/jem.175.4.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanham G., Kestens L., De Meester I., Vingerhoets J., Penne G., Vanhoof G., Scharpé S., Heyligen H., Bosmans E., Ceuppens J. L. Decreased expression of the memory marker CD26 on both CD4+ and CD8+ T lymphocytes of HIV-infected subjects. J Acquir Immune Defic Syndr. 1993 Jul;6(7):749–757. [PubMed] [Google Scholar]
- Vanham G., Kestens L., Gigase P., Colebunders R., Vandenbruaene M., Brijs L., Ceuppens J. L. Evidence for circulating activated cytotoxic T cells in HIV-infected subjects before the onset of opportunistic infections. Clin Exp Immunol. 1990 Oct;82(1):3–9. doi: 10.1111/j.1365-2249.1990.tb05395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanham G., Kestens L., Penne G., Goilav C., Gigase P., Colebunders R., Vandenbruaene M., Goeman J., van der Groen G., Ceuppens J. L. Subset markers of CD8(+) cells and their relation to enhanced cytotoxic T-cell activity during human immunodeficiency virus infection. J Clin Immunol. 1991 Nov;11(6):345–356. doi: 10.1007/BF00918800. [DOI] [PubMed] [Google Scholar]
- Verwilghen J., Baroja M. L., Van Vaeck F., Van Damme J., Ceuppens J. L. Differences in the stimulating capacity of immobilized anti-CD3 monoclonal antibodies: variable dependence on interleukin-1 as a helper signal for T-cell activation. Immunology. 1991 Feb;72(2):269–276. [PMC free article] [PubMed] [Google Scholar]
- Yamada H., Martin P. J., Bean M. A., Braun M. P., Beatty P. G., Sadamoto K., Hansen J. A. Monoclonal antibody 9.3 and anti-CD11 antibodies define reciprocal subsets of lymphocytes. Eur J Immunol. 1985 Dec;15(12):1164–1168. doi: 10.1002/eji.1830151204. [DOI] [PubMed] [Google Scholar]
- Yokochi T., Holly R. D., Clark E. A. B lymphoblast antigen (BB-1) expressed on Epstein-Barr virus-activated B cell blasts, B lymphoblastoid cell lines, and Burkitt's lymphomas. J Immunol. 1982 Feb;128(2):823–827. [PubMed] [Google Scholar]
- Zarling J. M., Ledbetter J. A., Sias J., Fultz P., Eichberg J., Gjerset G., Moran P. A. HIV-infected humans, but not chimpanzees, have circulating cytotoxic T lymphocytes that lyse uninfected CD4+ cells. J Immunol. 1990 Apr 15;144(8):2992–2998. [PubMed] [Google Scholar]
- Zola H., Koh L. Y., Mantzioris B. X., Rhodes D. Patients with HIV infection have a reduced proportion of lymphocytes expressing the IL2 receptor p55 chain (TAC, CD25). Clin Immunol Immunopathol. 1991 Apr;59(1):16–25. doi: 10.1016/0090-1229(91)90078-o. [DOI] [PubMed] [Google Scholar]
